source: sasmodels/sasmodels/models/ellipsoid.py @ dbf1a60

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since dbf1a60 was 2d81cfe, checked in by Paul Kienzle <pkienzle@…>, 6 years ago

lint

  • Property mode set to 100644
File size: 7.3 KB
RevLine 
[5d4777d]1# ellipsoid model
2# Note: model title and parameter table are inserted automatically
3r"""
[404ebbd]4The form factor is normalized by the particle volume
[5d4777d]5
6Definition
7----------
8
9The output of the 2D scattering intensity function for oriented ellipsoids
10is given by (Feigin, 1987)
11
12.. math::
13
[cade620]14    P(q,\alpha) = \frac{\text{scale}}{V} F^2(q,\alpha) + \text{background}
[5d4777d]15
16where
17
18.. math::
19
[3b571ae]20    F(q,\alpha) = \Delta \rho V \frac{3(\sin qr  - qr \cos qr)}{(qr)^3}
[5d4777d]21
[3b571ae]22for
[5d4777d]23
24.. math::
25
[3b571ae]26    r = \left[ R_e^2 \sin^2 \alpha + R_p^2 \cos^2 \alpha \right]^{1/2}
[5d4777d]27
28
29$\alpha$ is the angle between the axis of the ellipsoid and $\vec q$,
[3b571ae]30$V = (4/3)\pi R_pR_e^2$ is the volume of the ellipsoid, $R_p$ is the polar
31radius along the rotational axis of the ellipsoid, $R_e$ is the equatorial
32radius perpendicular to the rotational axis of the ellipsoid and
33$\Delta \rho$ (contrast) is the scattering length density difference between
34the scatterer and the solvent.
[5d4777d]35
[3b571ae]36For randomly oriented particles use the orientational average,
[416f5c7]37
38.. math::
39
[3b571ae]40   \langle F^2(q) \rangle = \int_{0}^{\pi/2}{F^2(q,\alpha)\sin(\alpha)\,d\alpha}
[416f5c7]41
42
[3b571ae]43computed via substitution of $u=\sin(\alpha)$, $du=\cos(\alpha)\,d\alpha$ as
44
45.. math::
46
47    \langle F^2(q) \rangle = \int_0^1{F^2(q, u)\,du}
48
49with
50
51.. math::
52
53    r = R_e \left[ 1 + u^2\left(R_p^2/R_e^2 - 1\right)\right]^{1/2}
54
[110f69c]55For 2d data from oriented ellipsoids the direction of the rotation axis of
56the ellipsoid is defined using two angles $\theta$ and $\phi$ as for the
[0a7eec11]57:ref:`cylinder orientation figure <cylinder-angle-definition>`.
[5d4777d]58For the ellipsoid, $\theta$ is the angle between the rotational axis
[3b571ae]59and the $z$ -axis in the $xz$ plane followed by a rotation by $\phi$
[110f69c]60in the $xy$ plane, for further details of the calculation and angular
[eda8b30]61dispersions see :ref:`orientation` .
[5d4777d]62
63NB: The 2nd virial coefficient of the solid ellipsoid is calculated based
64on the $R_p$ and $R_e$ values, and used as the effective radius for
[eb69cce]65$S(q)$ when $P(q) \cdot S(q)$ is applied.
[5d4777d]66
67
[eb69cce]68The $\theta$ and $\phi$ parameters are not used for the 1D output.
[5d4777d]69
[19dcb933]70
[5d4777d]71
72Validation
73----------
74
[aa2edb2]75Validation of the code was done by comparing the output of the 1D model
[5d4777d]76to the output of the software provided by the NIST (Kline, 2006).
77
[aa2edb2]78The implementation of the intensity for fully oriented ellipsoids was
79validated by averaging the 2D output using a uniform distribution
80$p(\theta,\phi) = 1.0$ and comparing with the output of the 1D calculation.
[5d4777d]81
82
83.. _ellipsoid-comparison-2d:
84
[19dcb933]85.. figure:: img/ellipsoid_comparison_2d.jpg
[5d4777d]86
87    Comparison of the intensity for uniformly distributed ellipsoids
88    calculated from our 2D model and the intensity from the NIST SANS
[19dcb933]89    analysis software. The parameters used were: *scale* = 1.0,
[a807206]90    *radius_polar* = 20 |Ang|, *radius_equatorial* = 400 |Ang|,
[19dcb933]91    *contrast* = 3e-6 |Ang^-2|, and *background* = 0.0 |cm^-1|.
[5d4777d]92
[eb69cce]93The discrepancy above $q$ = 0.3 |cm^-1| is due to the way the form factors
[5d4777d]94are calculated in the c-library provided by NIST. A numerical integration
[eb69cce]95has to be performed to obtain $P(q)$ for randomly oriented particles.
[5d4777d]96The NIST software performs that integration with a 76-point Gaussian
[eb69cce]97quadrature rule, which will become imprecise at high $q$ where the amplitude
98varies quickly as a function of $q$. The SasView result shown has been
[5d4777d]99obtained by summing over 501 equidistant points. Our result was found
[eb69cce]100to be stable over the range of $q$ shown for a number of points higher
[5d4777d]101than 500.
102
[3b571ae]103Model was also tested against the triaxial ellipsoid model with equal major
104and minor equatorial radii.  It is also consistent with the cyclinder model
105with polar radius equal to length and equatorial radius equal to radius.
106
[eb69cce]107References
108----------
[5d4777d]109
[431caae]110L A Feigin and D I Svergun.
111*Structure Analysis by Small-Angle X-Ray and Neutron Scattering*,
112Plenum Press, New York, 1987.
[3b571ae]113
[bb39b4a]114A. Isihara. J. Chem. Phys. 18(1950) 1446-1449
115
[3b571ae]116Authorship and Verification
117----------------------------
118
119* **Author:** NIST IGOR/DANSE **Date:** pre 2010
120* **Converted to sasmodels by:** Helen Park **Date:** July 9, 2014
121* **Last Modified by:** Paul Kienzle **Date:** March 22, 2017
[5d4777d]122"""
[404ebbd]123from __future__ import division
[5d4777d]124
[2d81cfe]125import numpy as np
[0b56f38]126from numpy import inf, sin, cos, pi
[5d4777d]127
128name = "ellipsoid"
129title = "Ellipsoid of revolution with uniform scattering length density."
130
131description = """\
132P(q.alpha)= scale*f(q)^2 + background, where f(q)= 3*(sld
[3556ad7]133        - sld_solvent)*V*[sin(q*r(Rp,Re,alpha))
[3e428ec]134        -q*r*cos(qr(Rp,Re,alpha))]
135        /[qr(Rp,Re,alpha)]^3"
[5d4777d]136
137     r(Rp,Re,alpha)= [Re^(2)*(sin(alpha))^2
[3e428ec]138        + Rp^(2)*(cos(alpha))^2]^(1/2)
[5d4777d]139
[3e428ec]140        sld: SLD of the ellipsoid
[3556ad7]141        sld_solvent: SLD of the solvent
[3e428ec]142        V: volume of the ellipsoid
143        Rp: polar radius of the ellipsoid
144        Re: equatorial radius of the ellipsoid
[5d4777d]145"""
[a5d0d00]146category = "shape:ellipsoid"
[5d4777d]147
[3e428ec]148#             ["name", "units", default, [lower, upper], "type","description"],
[42356c8]149parameters = [["sld", "1e-6/Ang^2", 4, [-inf, inf], "sld",
[3e428ec]150               "Ellipsoid scattering length density"],
[42356c8]151              ["sld_solvent", "1e-6/Ang^2", 1, [-inf, inf], "sld",
[3e428ec]152               "Solvent scattering length density"],
[a807206]153              ["radius_polar", "Ang", 20, [0, inf], "volume",
[3e428ec]154               "Polar radius"],
[a807206]155              ["radius_equatorial", "Ang", 400, [0, inf], "volume",
[3e428ec]156               "Equatorial radius"],
[9b79f29]157              ["theta", "degrees", 60, [-360, 360], "orientation",
158               "ellipsoid axis to beam angle"],
159              ["phi", "degrees", 60, [-360, 360], "orientation",
160               "rotation about beam"],
[3e428ec]161             ]
162
[925ad6e]163source = ["lib/sas_3j1x_x.c", "lib/gauss76.c", "ellipsoid.c"]
[5d4777d]164
[a807206]165def ER(radius_polar, radius_equatorial):
[bb39b4a]166    # see equation (26) in A.Isihara, J.Chem.Phys. 18(1950)1446-1449
[a807206]167    ee = np.empty_like(radius_polar)
168    idx = radius_polar > radius_equatorial
169    ee[idx] = (radius_polar[idx] ** 2 - radius_equatorial[idx] ** 2) / radius_polar[idx] ** 2
170    idx = radius_polar < radius_equatorial
171    ee[idx] = (radius_equatorial[idx] ** 2 - radius_polar[idx] ** 2) / radius_equatorial[idx] ** 2
172    idx = radius_polar == radius_equatorial
173    ee[idx] = 2 * radius_polar[idx]
174    valid = (radius_polar * radius_equatorial != 0)
[3e428ec]175    bd = 1.0 - ee[valid]
[5d4777d]176    e1 = np.sqrt(ee[valid])
[3e428ec]177    b1 = 1.0 + np.arcsin(e1) / (e1 * np.sqrt(bd))
178    bL = (1.0 + e1) / (1.0 - e1)
179    b2 = 1.0 + bd / 2 / e1 * np.log(bL)
180    delta = 0.75 * b1 * b2
[5d4777d]181
[92708d8]182    ddd = np.zeros_like(radius_polar)
[a807206]183    ddd[valid] = 2.0 * (delta + 1.0) * radius_polar * radius_equatorial ** 2
[3e428ec]184    return 0.5 * ddd ** (1.0 / 3.0)
185
[404ebbd]186def random():
[2d81cfe]187    volume = 10**np.random.uniform(5, 12)
[404ebbd]188    radius_polar = 10**np.random.uniform(1.3, 4)
[2d81cfe]189    radius_equatorial = np.sqrt(volume/radius_polar) # ignore 4/3 pi
[404ebbd]190    pars = dict(
191        #background=0, sld=0, sld_solvent=1,
192        radius_polar=radius_polar,
193        radius_equatorial=radius_equatorial,
194    )
195    return pars
[3e428ec]196
197demo = dict(scale=1, background=0,
[3556ad7]198            sld=6, sld_solvent=1,
[a807206]199            radius_polar=50, radius_equatorial=30,
[3e428ec]200            theta=30, phi=15,
[a807206]201            radius_polar_pd=.2, radius_polar_pd_n=15,
202            radius_equatorial_pd=.2, radius_equatorial_pd_n=15,
[3e428ec]203            theta_pd=15, theta_pd_n=45,
204            phi_pd=15, phi_pd_n=1)
[0b56f38]205q = 0.1
206# april 6 2017, rkh add unit tests, NOT compared with any other calc method, assume correct!
207qx = q*cos(pi/6.0)
208qy = q*sin(pi/6.0)
[2d81cfe]209tests = [
210    [{}, 0.05, 54.8525847025],
211    [{'theta':80., 'phi':10.}, (qx, qy), 1.74134670026],
212]
[0b56f38]213del qx, qy  # not necessary to delete, but cleaner
Note: See TracBrowser for help on using the repository browser.