source: sasmodels/sasmodels/models/cylinder.py @ d1fe925

gh-pages
Last change on this file since d1fe925 was d1fe925, checked in by ajj, 8 years ago

Creating gh_pages branch for docs

  • Property mode set to 100644
File size: 6.1 KB
Line 
1# cylinder model
2# Note: model title and parameter table are inserted automatically
3r"""
4The form factor is normalized by the particle volume.
5
6For information about polarised and magnetic scattering, click here_.
7
8Definition
9----------
10
11The output of the 2D scattering intensity function for oriented cylinders is
12given by (Guinier, 1955)
13
14.. math::
15
16    P(Q,\alpha) = {\text{scale} \over V} F^2(Q) + \text{background}
17
18where
19
20.. math::
21
22    F(Q) = 2 (\Delta \rho) V
23           {\sin \left(Q\tfrac12 L\cos\alpha \right)
24               \over Q\tfrac12 L \cos \alpha}
25           {J_1 \left(Q R \sin \alpha\right) \over Q R \sin \alpha}
26
27and $\alpha$ is the angle between the axis of the cylinder and $\vec q$, $V$
28is the volume of the cylinder, $L$ is the length of the cylinder, $R$ is the
29radius of the cylinder, and $\Delta\rho$ (contrast) is the scattering length
30density difference between the scatterer and the solvent. $J_1$ is the
31first order Bessel function.
32
33To provide easy access to the orientation of the cylinder, we define the
34axis of the cylinder using two angles $\theta$ and $\phi$. Those angles
35are defined in :num:`figure #cylinder-orientation`.
36
37.. _cylinder-orientation:
38
39.. figure:: img/orientation.jpg
40
41    Definition of the angles for oriented cylinders.
42
43.. figure:: img/orientation2.jpg
44
45    Examples of the angles for oriented cylinders against the detector plane.
46
47NB: The 2nd virial coefficient of the cylinder is calculated based on the
48radius and length values, and used as the effective radius for $S(Q)$
49when $P(Q) \cdot S(Q)$ is applied.
50
51The output of the 1D scattering intensity function for randomly oriented
52cylinders is then given by
53
54.. math::
55
56    P(Q) = {\text{scale} \over V}
57        \int_0^{\pi/2} F^2(Q,\alpha) \sin \alpha\ d\alpha + \text{background}
58
59The *theta* and *phi* parameters are not used for the 1D output. Our
60implementation of the scattering kernel and the 1D scattering intensity
61use the c-library from NIST.
62
63Validation
64----------
65
66Validation of our code was done by comparing the output of the 1D model
67to the output of the software provided by the NIST (Kline, 2006).
68:num:`Figure #cylinder-compare` shows a comparison of
69the 1D output of our model and the output of the NIST software.
70
71.. _cylinder-compare:
72
73.. figure:: img/cylinder_compare.jpg
74
75    Comparison of the SasView scattering intensity for a cylinder with the
76    output of the NIST SANS analysis software.
77    The parameters were set to: *scale* = 1.0, *radius* = 20 |Ang|,
78    *length* = 400 |Ang|, *contrast* = 3e-6 |Ang^-2|, and
79    *background* = 0.01 |cm^-1|.
80
81In general, averaging over a distribution of orientations is done by
82evaluating the following
83
84.. math::
85
86    P(Q) = \int_0^{\pi/2} d\phi
87        \int_0^\pi p(\theta, \phi) P_0(Q,\alpha) \sin \theta\ d\theta
88
89
90where $p(\theta,\phi)$ is the probability distribution for the orientation
91and $P_0(Q,\alpha)$ is the scattering intensity for the fully oriented
92system. Since we have no other software to compare the implementation of
93the intensity for fully oriented cylinders, we can compare the result of
94averaging our 2D output using a uniform distribution $p(\theta, \phi) = 1.0$.
95:num:`Figure #cylinder-crosscheck` shows the result of
96such a cross-check.
97
98.. _cylinder-crosscheck:
99
100.. figure:: img/cylinder_crosscheck.jpg
101
102    Comparison of the intensity for uniformly distributed cylinders
103    calculated from our 2D model and the intensity from the NIST SANS
104    analysis software.
105    The parameters used were: *scale* = 1.0, *radius* = 20 |Ang|,
106    *length* = 400 |Ang|, *contrast* = 3e-6 |Ang^-2|, and
107    *background* = 0.0 |cm^-1|.
108"""
109
110import numpy as np
111from numpy import pi, inf
112
113name = "cylinder"
114title = "Right circular cylinder with uniform scattering length density."
115description = """
116     f(q,alpha) = 2*(sld - solvent_sld)*V*sin(qLcos(alpha/2))
117                /[qLcos(alpha/2)]*J1(qRsin(alpha/2))/[qRsin(alpha)]
118
119            P(q,alpha)= scale/V*f(q,alpha)^(2)+background
120            V: Volume of the cylinder
121            R: Radius of the cylinder
122            L: Length of the cylinder
123            J1: The bessel function
124            alpha: angle between the axis of the
125            cylinder and the q-vector for 1D
126            :the ouput is P(q)=scale/V*integral
127            from pi/2 to zero of...
128            f(q,alpha)^(2)*sin(alpha)*dalpha + background
129"""
130category = "shape:cylinder"
131
132#             [ "name", "units", default, [lower, upper], "type", "description"],
133parameters = [["sld", "1e-6/Ang^2", 4, [-inf, inf], "",
134               "Cylinder scattering length density"],
135              ["solvent_sld", "1e-6/Ang^2", 1, [-inf, inf], "",
136               "Solvent scattering length density"],
137              ["radius", "Ang", 20, [0, inf], "volume",
138               "Cylinder radius"],
139              ["length", "Ang", 400, [0, inf], "volume",
140               "Cylinder length"],
141              ["theta", "degrees", 60, [-inf, inf], "orientation",
142               "In plane angle"],
143              ["phi", "degrees", 60, [-inf, inf], "orientation",
144               "Out of plane angle"],
145             ]
146
147source = ["lib/J1.c", "lib/gauss76.c", "cylinder.c"]
148
149def ER(radius, length):
150    ddd = 0.75 * radius * (2 * radius * length + (length + radius) * (length + pi * radius))
151    return 0.5 * (ddd) ** (1. / 3.)
152
153# parameters for demo
154demo = dict(scale=1, background=0,
155            sld=6, solvent_sld=1,
156            radius=20, length=300,
157            theta=60, phi=60,
158            radius_pd=.2, radius_pd_n=9,
159            length_pd=.2, length_pd_n=10,
160            theta_pd=10, theta_pd_n=5,
161            phi_pd=10, phi_pd_n=5)
162
163# For testing against the old sasview models, include the converted parameter
164# names and the target sasview model name.
165oldname = 'CylinderModel'
166oldpars = dict(theta='cyl_theta', phi='cyl_phi', sld='sldCyl', solvent_sld='sldSolv')
167
168
169qx, qy = 0.2 * np.cos(2.5), 0.2 * np.sin(2.5)
170tests = [[{}, 0.2, 0.041761386790780453],
171         [{}, [0.2], [0.041761386790780453]],
172         [{'theta':10.0, 'phi':10.0}, (qx, qy), 0.03414647218513852],
173         [{'theta':10.0, 'phi':10.0}, [(qx, qy)], [0.03414647218513852]],
174        ]
175del qx, qy  # not necessary to delete, but cleaner
Note: See TracBrowser for help on using the repository browser.