source: sasmodels/sasmodels/models/cylinder.py @ d138d43

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since d138d43 was d138d43, checked in by Paul Kienzle <pkienzle@…>, 8 years ago

remove documentation build errors

  • Property mode set to 100644
File size: 6.0 KB
Line 
1# cylinder model
2# Note: model title and parameter table are inserted automatically
3r"""
4The form factor is normalized by the particle volume.
5
6Definition
7----------
8
9The output of the 2D scattering intensity function for oriented cylinders is
10given by (Guinier, 1955)
11
12.. math::
13
14    P(Q,\alpha) = {\text{scale} \over V} F^2(Q) + \text{background}
15
16where
17
18.. math::
19
20    F(Q) = 2 (\Delta \rho) V
21           {\sin \left(Q\tfrac12 L\cos\alpha \right)
22               \over Q\tfrac12 L \cos \alpha}
23           {J_1 \left(Q R \sin \alpha\right) \over Q R \sin \alpha}
24
25and $\alpha$ is the angle between the axis of the cylinder and $\vec q$, $V$
26is the volume of the cylinder, $L$ is the length of the cylinder, $R$ is the
27radius of the cylinder, and $\Delta\rho$ (contrast) is the scattering length
28density difference between the scatterer and the solvent. $J_1$ is the
29first order Bessel function.
30
31To provide easy access to the orientation of the cylinder, we define the
32axis of the cylinder using two angles $\theta$ and $\phi$. Those angles
33are defined in :num:`figure #cylinder-orientation`.
34
35.. _cylinder-orientation:
36
37.. figure:: img/orientation.jpg
38
39    Definition of the angles for oriented cylinders.
40
41.. figure:: img/orientation2.jpg
42
43    Examples of the angles for oriented cylinders against the detector plane.
44
45NB: The 2nd virial coefficient of the cylinder is calculated based on the
46radius and length values, and used as the effective radius for $S(Q)$
47when $P(Q) \cdot S(Q)$ is applied.
48
49The output of the 1D scattering intensity function for randomly oriented
50cylinders is then given by
51
52.. math::
53
54    P(Q) = {\text{scale} \over V}
55        \int_0^{\pi/2} F^2(Q,\alpha) \sin \alpha\ d\alpha + \text{background}
56
57The *theta* and *phi* parameters are not used for the 1D output. Our
58implementation of the scattering kernel and the 1D scattering intensity
59use the c-library from NIST.
60
61Validation
62----------
63
64Validation of our code was done by comparing the output of the 1D model
65to the output of the software provided by the NIST (Kline, 2006).
66:num:`Figure #cylinder-compare` shows a comparison of
67the 1D output of our model and the output of the NIST software.
68
69.. _cylinder-compare:
70
71.. figure:: img/cylinder_compare.jpg
72
73    Comparison of the SasView scattering intensity for a cylinder with the
74    output of the NIST SANS analysis software.
75    The parameters were set to: *scale* = 1.0, *radius* = 20 |Ang|,
76    *length* = 400 |Ang|, *contrast* = 3e-6 |Ang^-2|, and
77    *background* = 0.01 |cm^-1|.
78
79In general, averaging over a distribution of orientations is done by
80evaluating the following
81
82.. math::
83
84    P(Q) = \int_0^{\pi/2} d\phi
85        \int_0^\pi p(\theta, \phi) P_0(Q,\alpha) \sin \theta\ d\theta
86
87
88where $p(\theta,\phi)$ is the probability distribution for the orientation
89and $P_0(Q,\alpha)$ is the scattering intensity for the fully oriented
90system. Since we have no other software to compare the implementation of
91the intensity for fully oriented cylinders, we can compare the result of
92averaging our 2D output using a uniform distribution $p(\theta, \phi) = 1.0$.
93:num:`Figure #cylinder-crosscheck` shows the result of
94such a cross-check.
95
96.. _cylinder-crosscheck:
97
98.. figure:: img/cylinder_crosscheck.jpg
99
100    Comparison of the intensity for uniformly distributed cylinders
101    calculated from our 2D model and the intensity from the NIST SANS
102    analysis software.
103    The parameters used were: *scale* = 1.0, *radius* = 20 |Ang|,
104    *length* = 400 |Ang|, *contrast* = 3e-6 |Ang^-2|, and
105    *background* = 0.0 |cm^-1|.
106"""
107
108import numpy as np
109from numpy import pi, inf
110
111name = "cylinder"
112title = "Right circular cylinder with uniform scattering length density."
113description = """
114     f(q,alpha) = 2*(sld - solvent_sld)*V*sin(qLcos(alpha/2))
115                /[qLcos(alpha/2)]*J1(qRsin(alpha/2))/[qRsin(alpha)]
116
117            P(q,alpha)= scale/V*f(q,alpha)^(2)+background
118            V: Volume of the cylinder
119            R: Radius of the cylinder
120            L: Length of the cylinder
121            J1: The bessel function
122            alpha: angle between the axis of the
123            cylinder and the q-vector for 1D
124            :the ouput is P(q)=scale/V*integral
125            from pi/2 to zero of...
126            f(q,alpha)^(2)*sin(alpha)*dalpha + background
127"""
128category = "shape:cylinder"
129
130#             [ "name", "units", default, [lower, upper], "type", "description"],
131parameters = [["sld", "1e-6/Ang^2", 4, [-inf, inf], "",
132               "Cylinder scattering length density"],
133              ["solvent_sld", "1e-6/Ang^2", 1, [-inf, inf], "",
134               "Solvent scattering length density"],
135              ["radius", "Ang", 20, [0, inf], "volume",
136               "Cylinder radius"],
137              ["length", "Ang", 400, [0, inf], "volume",
138               "Cylinder length"],
139              ["theta", "degrees", 60, [-inf, inf], "orientation",
140               "In plane angle"],
141              ["phi", "degrees", 60, [-inf, inf], "orientation",
142               "Out of plane angle"],
143             ]
144
145source = ["lib/J1.c", "lib/gauss76.c", "cylinder.c"]
146
147def ER(radius, length):
148    ddd = 0.75 * radius * (2 * radius * length + (length + radius) * (length + pi * radius))
149    return 0.5 * (ddd) ** (1. / 3.)
150
151# parameters for demo
152demo = dict(scale=1, background=0,
153            sld=6, solvent_sld=1,
154            radius=20, length=300,
155            theta=60, phi=60,
156            radius_pd=.2, radius_pd_n=9,
157            length_pd=.2, length_pd_n=10,
158            theta_pd=10, theta_pd_n=5,
159            phi_pd=10, phi_pd_n=5)
160
161# For testing against the old sasview models, include the converted parameter
162# names and the target sasview model name.
163oldname = 'CylinderModel'
164oldpars = dict(theta='cyl_theta', phi='cyl_phi', sld='sldCyl', solvent_sld='sldSolv')
165
166
167qx, qy = 0.2 * np.cos(2.5), 0.2 * np.sin(2.5)
168tests = [[{}, 0.2, 0.041761386790780453],
169         [{}, [0.2], [0.041761386790780453]],
170         [{'theta':10.0, 'phi':10.0}, (qx, qy), 0.03414647218513852],
171         [{'theta':10.0, 'phi':10.0}, [(qx, qy)], [0.03414647218513852]],
172        ]
173del qx, qy  # not necessary to delete, but cleaner
Note: See TracBrowser for help on using the repository browser.