source: sasmodels/sasmodels/models/cylinder.py @ 143e2f7

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 143e2f7 was 143e2f7, checked in by pkienzle, 9 years ago

fix cylinder test case

  • Property mode set to 100644
File size: 6.3 KB
Line 
1# cylinder model
2# Note: model title and parameter table are inserted automatically
3r"""
4The form factor is normalized by the particle volume.
5
6For information about polarised and magnetic scattering, click here_.
7
8Definition
9----------
10
11The output of the 2D scattering intensity function for oriented cylinders is
12given by (Guinier, 1955)
13
14.. math::
15
16    P(Q,\alpha) = {\text{scale} \over V} F^2(Q) + \text{background}
17
18where
19
20.. math::
21
22    F(Q) = 2 (\Delta \rho) V
23           {\sin \left(Q\tfrac12 L\cos\alpha \right)
24               \over Q\tfrac12 L \cos \alpha}
25           {J_1 \left(Q R \sin \alpha\right) \over Q R \sin \alpha}
26
27and $\alpha$ is the angle between the axis of the cylinder and $\vec q$, $V$
28is the volume of the cylinder, $L$ is the length of the cylinder, $R$ is the
29radius of the cylinder, and $\Delta\rho$ (contrast) is the scattering length
30density difference between the scatterer and the solvent. $J_1$ is the
31first order Bessel function.
32
33To provide easy access to the orientation of the cylinder, we define the
34axis of the cylinder using two angles $\theta$ and $\phi$. Those angles
35are defined in :num:`figure #cylinder-orientation`.
36
37.. _cylinder-orientation:
38
39.. figure:: img/orientation.jpg
40
41    Definition of the angles for oriented cylinders.
42
43.. figure:: img/orientation2.jpg
44
45    Examples of the angles for oriented cylinders against the detector plane.
46
47NB: The 2nd virial coefficient of the cylinder is calculated based on the
48radius and length values, and used as the effective radius for $S(Q)$
49when $P(Q) \cdot S(Q)$ is applied.
50
51The output of the 1D scattering intensity function for randomly oriented
52cylinders is then given by
53
54.. math::
55
56    P(Q) = {\text{scale} \over V}
57        \int_0^{\pi/2} F^2(Q,\alpha) \sin \alpha\ d\alpha + \text{background}
58
59The *theta* and *phi* parameters are not used for the 1D output. Our
60implementation of the scattering kernel and the 1D scattering intensity
61use the c-library from NIST.
62
63Validation
64----------
65
66Validation of our code was done by comparing the output of the 1D model
67to the output of the software provided by the NIST (Kline, 2006).
68:num:`Figure #cylinder-compare` shows a comparison of
69the 1D output of our model and the output of the NIST software.
70
71.. _cylinder-compare:
72
73.. figure:: img/cylinder_compare.jpg
74
75    Comparison of the SasView scattering intensity for a cylinder with the
76    output of the NIST SANS analysis software.
77    The parameters were set to: *scale* = 1.0, *radius* = 20 |Ang|,
78    *length* = 400 |Ang|, *contrast* = 3e-6 |Ang^-2|, and
79    *background* = 0.01 |cm^-1|.
80
81In general, averaging over a distribution of orientations is done by
82evaluating the following
83
84.. math::
85
86    P(Q) = \int_0^{\pi/2} d\phi
87        \int_0^\pi p(\theta, \phi) P_0(Q,\alpha) \sin \theta\ d\theta
88
89
90where $p(\theta,\phi)$ is the probability distribution for the orientation
91and $P_0(Q,\alpha)$ is the scattering intensity for the fully oriented
92system. Since we have no other software to compare the implementation of
93the intensity for fully oriented cylinders, we can compare the result of
94averaging our 2D output using a uniform distribution $p(\theta, \phi) = 1.0$.
95:num:`Figure #cylinder-crosscheck` shows the result of
96such a cross-check.
97
98.. _cylinder-crosscheck:
99
100.. figure:: img/cylinder_crosscheck.jpg
101
102    Comparison of the intensity for uniformly distributed cylinders
103    calculated from our 2D model and the intensity from the NIST SANS
104    analysis software.
105    The parameters used were: *scale* = 1.0, *radius* = 20 |Ang|,
106    *length* = 400 |Ang|, *contrast* = 3e-6 |Ang^-2|, and
107    *background* = 0.0 |cm^-1|.
108"""
109
110import numpy as np
111from numpy import pi, inf
112
113name = "cylinder"
114title = "Right circular cylinder with uniform scattering length density."
115description = """
116     f(q,alpha) = 2*(sld - solvent_sld)*V*sin(qLcos(alpha/2))
117                /[qLcos(alpha/2)]*J1(qRsin(alpha/2))/[qRsin(alpha)]
118
119            P(q,alpha)= scale/V*f(q,alpha)^(2)+background
120            V: Volume of the cylinder
121            R: Radius of the cylinder
122            L: Length of the cylinder
123            J1: The bessel function
124            alpha: angle between the axis of the
125            cylinder and the q-vector for 1D
126            :the ouput is P(q)=scale/V*integral
127            from pi/2 to zero of...
128            f(q,alpha)^(2)*sin(alpha)*dalpha + background
129"""
130
131parameters = [
132#   [ "name", "units", default, [lower, upper], "type",
133#     "description" ],
134    [ "sld", "1e-6/Ang^2", 4, [-inf,inf], "",
135      "Cylinder scattering length density" ],
136    [ "solvent_sld", "1e-6/Ang^2", 1, [-inf,inf], "",
137      "Solvent scattering length density" ],
138    [ "radius", "Ang",  20, [0, inf], "volume",
139      "Cylinder radius" ],
140    [ "length", "Ang",  400, [0, inf], "volume",
141      "Cylinder length" ],
142    [ "theta", "degrees", 60, [-inf, inf], "orientation",
143      "In plane angle" ],
144    [ "phi", "degrees", 60, [-inf, inf], "orientation",
145      "Out of plane angle" ],
146    ]
147
148source = [ "lib/J1.c", "lib/gauss76.c", "cylinder.c" ]
149
150def ER(radius, length):
151    ddd = 0.75*radius*(2*radius*length + (length+radius)*(length+pi*radius))
152    return 0.5 * (ddd)**(1./3.)
153
154# parameters for demo
155demo = dict(
156    scale=1, background=0,
157    sld=6, solvent_sld=1,
158    #radius=5, length=20,
159    radius=260, length=290,
160    theta=30, phi=0,
161    radius_pd=.2, radius_pd_n=9,
162    length_pd=.2,length_pd_n=10,
163    theta_pd=15, theta_pd_n=45,
164    phi_pd=15, phi_pd_n=1,
165    )
166
167# For testing against the old sasview models, include the converted parameter
168# names and the target sasview model name.
169oldname='CylinderModel'
170oldpars=dict(theta='cyl_theta', phi='cyl_phi', sld='sldCyl', solvent_sld='sldSolv')
171
172
173# test values:
174# [
175#   [ {parameters}, q, I(q)],
176#   [ {parameters}, [q], [I(q)] ],
177#   [ {parameters}, [q1, q2, ...], [I(q1), I(q2), ...]],
178
179#   [ {parameters}, (qx, qy), I(qx, Iqy)],
180#   [ {parameters}, [(qx1, qy1), (qx2, qy2), ...], [I(qx1,qy1), I(qx2,qy2), ...],
181#   ...
182# ]
183# Precision defaults to 7 digits (relative) for single, 14 for double
184# May want a limited precision version that checks for 8-n or 15-n digits respectively
185qx,qy = 0.2*np.cos(2.5), 0.2*np.sin(2.5)
186tests = [
187    [{},  0.2, 0.041761386790780453],
188    [{}, [0.2], [0.041761386790780453]],
189    [{'theta':10.0, 'phi':10.0}, (qx, qy), 0.03414647218513852],
190    [{'theta':10.0, 'phi':10.0}, [(qx, qy)], [0.03414647218513852]],
191    ]
192del qx,qy  # not necessary to delete, but cleaner
Note: See TracBrowser for help on using the repository browser.