source: sasmodels/sasmodels/models/core_shell_bicelle_elliptical.py @ 17fb550

core_shell_microgelscostrafo411magnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 17fb550 was 17fb550, checked in by wojciech, 7 years ago

One more nowrap added

  • Property mode set to 100644
File size: 6.9 KB
Line 
1r"""
2Definition
3----------
4
5This model provides the form factor for an elliptical cylinder with a
6core-shell scattering length density profile. Thus this is a variation
7of the core-shell bicelle model, but with an elliptical cylinder for the core.
8Outer shells on the rims and flat ends may be of different thicknesses and
9scattering length densities. The form factor is normalized by the total particle volume.
10
11
12.. figure:: img/core_shell_bicelle_geometry.png
13
14    Schematic cross-section of bicelle. Note however that the model here
15    calculates for rectangular, not curved, rims as shown below.
16
17.. figure:: img/core_shell_bicelle_parameters.png
18
19   Cross section of model used here. Users will have
20   to decide how to distribute "heads" and "tails" between the rim, face
21   and core regions in order to estimate appropriate starting parameters.
22
23Given the scattering length densities (sld) $\rho_c$, the core sld, $\rho_f$,
24the face sld, $\rho_r$, the rim sld and $\rho_s$ the solvent sld, the
25scattering length density variation along the bicelle axis is:
26
27.. math::
28
29    \rho(r) =
30      \begin{cases}
31      &\rho_c \text{ for } 0 \lt r \lt R; -L \lt z\lt L \\[1.5ex]
32      &\rho_f \text{ for } 0 \lt r \lt R; -(L+2t) \lt z\lt -L;
33      L \lt z\lt (L+2t) \\[1.5ex]
34      &\rho_r\text{ for } 0 \lt r \lt R; -(L+2t) \lt z\lt -L; L \lt z\lt (L+2t)
35      \end{cases}
36
37The form factor for the bicelle is calculated in cylindrical coordinates, where
38$\alpha$ is the angle between the $Q$ vector and the cylinder axis, and $\psi$ is the angle
39for the ellipsoidal cross section core, to give:
40
41.. math::
42
43    I(Q,\alpha,\psi) = \frac{\text{scale}}{V_t} \cdot
44        F(Q,\alpha, \psi)^2.sin(\alpha) + \text{background}
45
46where a numerical integration of $F(Q,\alpha, \psi)^2.sin(\alpha)$ is carried out over \alpha and \psi for:
47
48.. math::
49
50    :nowrap:
51
52    \begin{align}
53    F(Q,\alpha,\psi) = &\bigg[
54    (\rho_c - \rho_f) V_c \frac{2J_1(QR'sin \alpha)}{QR'sin\alpha}\frac{sin(QLcos\alpha/2)}{Q(L/2)cos\alpha} \\
55    &+(\rho_f - \rho_r) V_{c+f} \frac{2J_1(QR'sin\alpha)}{QR'sin\alpha}\frac{sin(Q(L/2+t_f)cos\alpha)}{Q(L/2+t_f)cos\alpha} \\
56    &+(\rho_r - \rho_s) V_t \frac{2J_1(Q(R'+t_r)sin\alpha)}{Q(R'+t_r)sin\alpha}\frac{sin(Q(L/2+t_f)cos\alpha)}{Q(L/2+t_f)cos\alpha}
57    \bigg]
58    \end{align}
59
60where
61
62.. math::
63
64    R'=\frac{R}{\sqrt{2}}\sqrt{(1+X_{core}^{2}) + (1-X_{core}^{2})cos(\psi)}
65   
66   
67and $V_t = \pi.(R+t_r)(Xcore.R+t_r)^2.(L+2.t_f)$ is the total volume of the bicelle,
68$V_c = \pi.Xcore.R^2.L$ the volume of the core, $V_{c+f} = \pi.Xcore.R^2.(L+2.t_f)$
69the volume of the core plus the volume of the faces, $R$ is the radius
70of the core, $Xcore$ is the axial ratio of the core, $L$ the length of the core,
71$t_f$ the thickness of the face, $t_r$ the thickness of the rim and $J_1$ the usual
72first order bessel function. The core has radii $R$ and $Xcore.R$ so is circular,
73as for the core_shell_bicelle model, for $Xcore$ =1. Note that you may need to
74limit the range of $Xcore$, especially if using the Monte-Carlo algorithm, as
75setting radius to $R/Xcore$ and axial ratio to $1/Xcore$ gives an equivalent solution!
76
77The output of the 1D scattering intensity function for randomly oriented
78bicelles is then given by integrating over all possible $\alpha$ and $\psi$.
79
80For oriented bicellles the *theta*, *phi* and *psi* orientation parameters only appear when fitting 2D data,
81see the :ref:`elliptical-cylinder` model for further information.
82
83
84.. figure:: img/elliptical_cylinder_angle_definition.jpg
85
86    Definition of the angles for the oriented core_shell_bicelle_elliptical model.
87    Note that *theta* and *phi* are currently defined differently to those for the core_shell_bicelle model.
88
89
90References
91----------
92
93.. [#]
94
95Authorship and Verification
96----------------------------
97
98* **Author:** Richard Heenan **Date:** December 14, 2016
99* **Last Modified by:**  Richard Heenan **Date:** December 14, 2016
100* **Last Reviewed by:**  Richard Heenan BEWARE 2d data yet to be checked **Date:** December 14, 2016
101"""
102
103from numpy import inf, sin, cos
104
105name = "core_shell_bicelle_elliptical"
106title = "Elliptical cylinder with a core-shell scattering length density profile.."
107description = """
108    core_shell_bicelle_elliptical
109    Elliptical cylinder core, optional shell on the two flat faces, and shell of
110    uniform thickness on its rim (extending around the end faces).   
111    Please see full documentation for equations and further details.
112    Involves a double numerical integral around the ellipsoid diameter
113    and the angle of the cylinder axis to Q.
114    Compare also the core_shell_bicelle and elliptical_cylinder models.
115      """
116category = "shape:cylinder"
117
118# pylint: disable=bad-whitespace, line-too-long
119#             ["name", "units", default, [lower, upper], "type", "description"],
120parameters = [
121    ["radius",         "Ang",       30, [0, inf],    "volume",      "Cylinder core radius"],
122    ["x_core",        "None",       3,  [0, inf],    "volume",      "axial ratio of core, X = r_polar/r_equatorial"],
123    ["thick_rim",  "Ang",        8, [0, inf],    "volume",      "Rim shell thickness"],
124    ["thick_face", "Ang",       14, [0, inf],    "volume",      "Cylinder face thickness"],
125    ["length",         "Ang",      50, [0, inf],    "volume",      "Cylinder length"],
126    ["sld_core",       "1e-6/Ang^2", 4, [-inf, inf], "sld",         "Cylinder core scattering length density"],
127    ["sld_face",       "1e-6/Ang^2", 7, [-inf, inf], "sld",         "Cylinder face scattering length density"],
128    ["sld_rim",        "1e-6/Ang^2", 1, [-inf, inf], "sld",         "Cylinder rim scattering length density"],
129    ["sld_solvent",    "1e-6/Ang^2", 6, [-inf, inf], "sld",         "Solvent scattering length density"],
130    ["theta",          "degrees",   90, [-360, 360], "orientation", "In plane angle"],
131    ["phi",            "degrees",    0, [-360, 360], "orientation", "Out of plane angle"],
132    ["psi",            "degrees",    0, [-360, 360], "orientation", "Major axis angle relative to Q"],
133    ]
134
135# pylint: enable=bad-whitespace, line-too-long
136
137source = ["lib/sas_Si.c", "lib/polevl.c", "lib/sas_J1.c", "lib/gauss76.c",
138          "core_shell_bicelle_elliptical.c"]
139
140demo = dict(scale=1, background=0,
141            radius=30.0,
142            x_core=3.0,
143            thick_rim=8.0,
144            thick_face=14.0,
145            length=50.0,
146            sld_core=4.0,
147            sld_face=7.0,
148            sld_rim=1.0,
149            sld_solvent=6.0,
150            theta=90,
151            phi=0,
152            psi=0)
153
154#qx, qy = 0.4 * cos(pi/2.0), 0.5 * sin(0)
155
156tests = [
157    [{'radius': 30.0, 'x_core': 3.0, 'thick_rim':8.0, 'thick_face':14.0, 'length':50.0}, 'ER', 1],
158    [{'radius': 30.0, 'x_core': 3.0, 'thick_rim':8.0, 'thick_face':14.0, 'length':50.0}, 'VR', 1],
159
160    [{'radius': 30.0, 'x_core': 3.0, 'thick_rim':8.0, 'thick_face':14.0, 'length':50.0,
161    'sld_core':4.0, 'sld_face':7.0, 'sld_rim':1.0, 'sld_solvent':6.0, 'background':0.0},
162    0.015, 286.540286],
163]
Note: See TracBrowser for help on using the repository browser.