1 | double form_volume(double radius, double x_core, double thick_rim, double thick_face, double length); |
---|
2 | double Iq(double q, |
---|
3 | double radius, |
---|
4 | double x_core, |
---|
5 | double thick_rim, |
---|
6 | double thick_face, |
---|
7 | double length, |
---|
8 | double core_sld, |
---|
9 | double face_sld, |
---|
10 | double rim_sld, |
---|
11 | double solvent_sld); |
---|
12 | |
---|
13 | |
---|
14 | double Iqxy(double qx, double qy, |
---|
15 | double radius, |
---|
16 | double x_core, |
---|
17 | double thick_rim, |
---|
18 | double thick_face, |
---|
19 | double length, |
---|
20 | double core_sld, |
---|
21 | double face_sld, |
---|
22 | double rim_sld, |
---|
23 | double solvent_sld, |
---|
24 | double theta, |
---|
25 | double phi, |
---|
26 | double psi); |
---|
27 | |
---|
28 | // NOTE that "length" here is the full height of the core! |
---|
29 | double form_volume(double radius, double x_core, double thick_rim, double thick_face, double length) |
---|
30 | { |
---|
31 | return M_PI*(radius+thick_rim)*(radius*x_core+thick_rim)*(length+2.0*thick_face); |
---|
32 | } |
---|
33 | |
---|
34 | double |
---|
35 | Iq(double qq, |
---|
36 | double rad, |
---|
37 | double x_core, |
---|
38 | double radthick, |
---|
39 | double facthick, |
---|
40 | double length, |
---|
41 | double rhoc, |
---|
42 | double rhoh, |
---|
43 | double rhor, |
---|
44 | double rhosolv) |
---|
45 | { |
---|
46 | double si1,si2,be1,be2; |
---|
47 | // core_shell_bicelle_elliptical, RKH Dec 2016, based on elliptical_cylinder and core_shell_bicelle |
---|
48 | // tested against limiting cases of cylinder, elliptical_cylinder and core_shell_bicelle |
---|
49 | // const double uplim = M_PI_4; |
---|
50 | const double halfheight = 0.5*length; |
---|
51 | //const double va = 0.0; |
---|
52 | //const double vb = 1.0; |
---|
53 | // inner integral limits |
---|
54 | //const double vaj=0.0; |
---|
55 | //const double vbj=M_PI; |
---|
56 | |
---|
57 | const double radius_major = rad * x_core; |
---|
58 | const double rA = 0.5*(square(radius_major) + square(rad)); |
---|
59 | const double rB = 0.5*(square(radius_major) - square(rad)); |
---|
60 | const double dr1 = (rhoc-rhoh) *M_PI*rad*radius_major*(2.0*halfheight);; |
---|
61 | const double dr2 = (rhor-rhosolv)*M_PI*(rad+radthick)*(radius_major+radthick)*2.0*(halfheight+facthick); |
---|
62 | const double dr3 = (rhoh-rhor) *M_PI*rad*radius_major*2.0*(halfheight+facthick); |
---|
63 | //const double vol1 = M_PI*rad*radius_major*(2.0*halfheight); |
---|
64 | //const double vol2 = M_PI*(rad+radthick)*(radius_major+radthick)*2.0*(halfheight+facthick); |
---|
65 | //const double vol3 = M_PI*rad*radius_major*2.0*(halfheight+facthick); |
---|
66 | |
---|
67 | //initialize integral |
---|
68 | double outer_sum = 0.0; |
---|
69 | for(int i=0;i<76;i++) { |
---|
70 | //setup inner integral over the ellipsoidal cross-section |
---|
71 | // since we generate these lots of times, why not store them somewhere? |
---|
72 | //const double cos_alpha = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; |
---|
73 | const double cos_alpha = ( Gauss76Z[i] + 1.0 )/2.0; |
---|
74 | const double sin_alpha = sqrt(1.0 - cos_alpha*cos_alpha); |
---|
75 | double inner_sum=0; |
---|
76 | double sinarg1 = qq*halfheight*cos_alpha; |
---|
77 | double sinarg2 = qq*(halfheight+facthick)*cos_alpha; |
---|
78 | si1 = sas_sinx_x(sinarg1); |
---|
79 | si2 = sas_sinx_x(sinarg2); |
---|
80 | for(int j=0;j<76;j++) { |
---|
81 | //76 gauss points for the inner integral (WAS 20 points,so this may make unecessarily slow, but playing safe) |
---|
82 | //const double beta = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; |
---|
83 | const double beta = ( Gauss76Z[j] +1.0)*M_PI_2; |
---|
84 | const double rr = sqrt(rA - rB*cos(beta)); |
---|
85 | double besarg1 = qq*rr*sin_alpha; |
---|
86 | double besarg2 = qq*(rr+radthick)*sin_alpha; |
---|
87 | be1 = sas_J1c(besarg1); |
---|
88 | be2 = sas_J1c(besarg2); |
---|
89 | inner_sum += Gauss76Wt[j] *square(dr1*si1*be1 + |
---|
90 | dr2*si2*be2 + |
---|
91 | dr3*si2*be1); |
---|
92 | } |
---|
93 | //now calculate outer integral |
---|
94 | outer_sum += Gauss76Wt[i] * inner_sum; |
---|
95 | } |
---|
96 | |
---|
97 | return outer_sum*2.5e-05; |
---|
98 | } |
---|
99 | |
---|
100 | double |
---|
101 | Iqxy(double qx, double qy, |
---|
102 | double rad, |
---|
103 | double x_core, |
---|
104 | double radthick, |
---|
105 | double facthick, |
---|
106 | double length, |
---|
107 | double rhoc, |
---|
108 | double rhoh, |
---|
109 | double rhor, |
---|
110 | double rhosolv, |
---|
111 | double theta, |
---|
112 | double phi, |
---|
113 | double psi) |
---|
114 | { |
---|
115 | // THIS NEEDS TESTING |
---|
116 | double qq, cos_val, cos_mu, cos_nu; |
---|
117 | ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, qq, cos_val, cos_mu, cos_nu); |
---|
118 | const double dr1 = rhoc-rhoh; |
---|
119 | const double dr2 = rhor-rhosolv; |
---|
120 | const double dr3 = rhoh-rhor; |
---|
121 | const double radius_major = rad*x_core; |
---|
122 | const double halfheight = 0.5*length; |
---|
123 | const double vol1 = M_PI*rad*radius_major*length; |
---|
124 | const double vol2 = M_PI*(rad+radthick)*(radius_major+radthick)*2.0*(halfheight+facthick); |
---|
125 | const double vol3 = M_PI*rad*radius_major*2.0*(halfheight+facthick); |
---|
126 | |
---|
127 | // Compute: r = sqrt((radius_major*cos_nu)^2 + (radius_minor*cos_mu)^2) |
---|
128 | // Given: radius_major = r_ratio * radius_minor |
---|
129 | // ASSUME the sin_alpha is included in the separate integration over orientation of rod angle |
---|
130 | const double r = rad*sqrt(square(x_core*cos_nu) + cos_mu*cos_mu); |
---|
131 | const double be1 = sas_J1c(qq*r); |
---|
132 | const double be2 = sas_J1c( qq*(r + radthick ) ); |
---|
133 | const double si1 = sas_sinx_x( qq*halfheight*cos_val ); |
---|
134 | const double si2 = sas_sinx_x( qq*(halfheight + facthick)*cos_val ); |
---|
135 | const double Aq = square( vol1*dr1*si1*be1 + vol2*dr2*si2*be2 + vol3*dr3*si2*be1); |
---|
136 | //const double vol = form_volume(radius_minor, r_ratio, length); |
---|
137 | return 1.0e-4 * Aq; |
---|
138 | } |
---|
139 | |
---|