source: sasmodels/sasmodels/models/capped_cylinder.py @ b0c4271

core_shell_microgelscostrafo411magnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since b0c4271 was b0c4271, checked in by butler, 8 years ago

model documentation final format through core_shell_bicelle re: #646

  • Property mode set to 100644
File size: 5.7 KB
Line 
1r"""
2Definitions
3-----------
4
5Calculates the scattering from a cylinder with spherical section end-caps.
6Like :ref:`barbell`, this is a sphereocylinder with end caps that have a
7radius larger than that of the cylinder, but with the center of the end cap
8radius lying within the cylinder. This model simply becomes a convex
9lens when the length of the cylinder $L=0$. See the diagram for the details
10of the geometry and restrictions on parameter values.
11
12.. figure:: img/capped_cylinder_geometry.jpg
13
14    Capped cylinder geometry, where $r$ is *radius*, $R$ is *bell_radius* and
15    $L$ is *length*. Since the end cap radius $R \geq r$ and by definition
16    for this geometry $h < 0$, $h$ is then defined by $r$ and $R$ as
17    $h = - \sqrt{R^2 - r^2}$
18
19The scattered intensity $I(q)$ is calculated as
20
21.. math::
22
23    I(q) = \frac{\Delta \rho^2}{V} \left<A^2(q)\right>
24
25where the amplitude $A(q)$ is given as
26
27.. math::
28
29    A(q) =&\ \pi r^2L
30        \frac{\sin\left(\tfrac12 qL\cos\theta\right)}
31            {\tfrac12 qL\cos\theta}
32        \frac{2 J_1(qr\sin\theta)}{qr\sin\theta} \\
33        &\ + 4 \pi R^3 \int_{-h/R}^1 dt
34        \cos\left[ q\cos\theta
35            \left(Rt + h + {\tfrac12} L\right)\right]
36        \times (1-t^2)
37        \frac{J_1\left[qR\sin\theta \left(1-t^2\right)^{1/2}\right]}
38             {qR\sin\theta \left(1-t^2\right)^{1/2}}
39
40The $\left<\ldots\right>$ brackets denote an average of the structure over
41all orientations. $\left< A^2(q)\right>$ is then the form factor, $P(q)$.
42The scale factor is equivalent to the volume fraction of cylinders, each of
43volume, $V$. Contrast $\Delta\rho$ is the difference of scattering length
44densities of the cylinder and the surrounding solvent.
45
46The volume of the capped cylinder is (with $h$ as a positive value here)
47
48.. math::
49
50    V = \pi r_c^2 L + \tfrac{2\pi}{3}(R-h)^2(2R + h)
51
52
53and its radius of gyration is
54
55.. math::
56
57    R_g^2 =&\ \left[ \tfrac{12}{5}R^5
58        + R^4\left(6h+\tfrac32 L\right)
59        + R^2\left(4h^2 + L^2 + 4Lh\right)
60        + R^2\left(3Lh^2 + \tfrac32 L^2h\right) \right. \\
61        &\ \left. + \tfrac25 h^5 - \tfrac12 Lh^4 - \tfrac12 L^2h^3
62        + \tfrac14 L^3r^2 + \tfrac32 Lr^4 \right]
63        \left( 4R^3 6R^2h - 2h^3 + 3r^2L \right)^{-1}
64
65
66.. note::
67
68    The requirement that $R \geq r$ is not enforced in the model!
69    It is up to you to restrict this during analysis.
70
71The 2D scattering intensity is calculated similar to the 2D cylinder model.
72
73.. figure:: img/cylinder_angle_definition.jpg
74
75    Definition of the angles for oriented 2D cylinders.
76
77.. figure:: img/cylinder_angle_projection.jpg
78    :width: 600px
79
80    Examples of the angles for oriented 2D cylinders against the detector plane.
81
82References
83----------
84
85.. [#] H Kaya, *J. Appl. Cryst.*, 37 (2004) 223-230
86.. [#] H Kaya and N-R deSouza, *J. Appl. Cryst.*, 37 (2004) 508-509 (addenda
87   and errata)
88
89Authorship and Verification
90----------------------------
91
92* **Author:** NIST IGOR/DANSE **Date:** pre 2010
93* **Last Modified by:** Paul Butler **Date:** September 30, 2016
94* **Last Reviewed by:** Richard Heenan **Date:** March 19, 2016
95"""
96from numpy import inf
97
98name = "capped_cylinder"
99title = "Right circular cylinder with spherical end caps and uniform SLD"
100description = """That is, a sphereocylinder
101    with end caps that have a radius larger than
102    that of the cylinder and the center of the
103    end cap radius lies within the cylinder.
104    Note: As the length of cylinder -->0,
105    it becomes a Convex Lens.
106    It must be that radius <(=) radius_cap.
107    [Parameters];
108    scale: volume fraction of spheres,
109    background:incoherent background,
110    radius: radius of the cylinder,
111    length: length of the cylinder,
112    radius_cap: radius of the semi-spherical cap,
113    sld: SLD of the capped cylinder,
114    sld_solvent: SLD of the solvent.
115"""
116category = "shape:cylinder"
117# pylint: disable=bad-whitespace, line-too-long
118#             ["name", "units", default, [lower, upper], "type", "description"],
119parameters = [["sld",         "1e-6/Ang^2", 4, [-inf, inf], "sld",    "Cylinder scattering length density"],
120              ["sld_solvent", "1e-6/Ang^2", 1, [-inf, inf], "sld",    "Solvent scattering length density"],
121              ["radius",      "Ang",       20, [0, inf],    "volume", "Cylinder radius"],
122
123              # TODO: use an expression for cap radius with fixed bounds.
124              # The current form requires cap radius R bigger than cylinder radius r.
125              # Could instead use R/r in [1,inf], r/R in [0,1], or the angle between
126              # cylinder and cap in [0,90].  The problem is similar for the barbell
127              # model.  Propose r/R in [0,1] in both cases, with the model specifying
128              # cylinder radius in the capped cylinder model and sphere radius in the
129              # barbell model.  This leads to the natural value of zero for no cap
130              # in the capped cylinder, and zero for no bar in the barbell model.  In
131              # both models, one would be a pill.
132              ["radius_cap", "Ang",     20, [0, inf],    "volume", "Cap radius"],
133              ["length",     "Ang",    400, [0, inf],    "volume", "Cylinder length"],
134              ["theta",      "degrees", 60, [-inf, inf], "orientation", "In plane angle"],
135              ["phi",        "degrees", 60, [-inf, inf], "orientation", "Out of plane angle"],
136             ]
137# pylint: enable=bad-whitespace, line-too-long
138
139source = ["lib/polevl.c", "lib/sas_J1.c", "lib/gauss76.c", "capped_cylinder.c"]
140
141demo = dict(scale=1, background=0,
142            sld=6, sld_solvent=1,
143            radius=260, radius_cap=290, length=290,
144            theta=30, phi=15,
145            radius_pd=.2, radius_pd_n=1,
146            radius_cap_pd=.2, radius_cap_pd_n=1,
147            length_pd=.2, length_pd_n=10,
148            theta_pd=15, theta_pd_n=45,
149            phi_pd=15, phi_pd_n=1)
Note: See TracBrowser for help on using the repository browser.