1 | double form_volume(double radius, double cap_radius, double length); |
---|
2 | double Iq(double q, double sld, double solvent_sld, |
---|
3 | double radius, double cap_radius, double length); |
---|
4 | double Iqxy(double qx, double qy, double sld, double solvent_sld, |
---|
5 | double radius, double cap_radius, double length, double theta, double phi); |
---|
6 | |
---|
7 | // Integral over a convex lens kernel for t in [h/R,1]. See the docs for |
---|
8 | // the definition of the function being integrated. |
---|
9 | // q is the magnitude of the q vector. |
---|
10 | // h is the length of the lens "inside" the cylinder. This negative wrt the |
---|
11 | // definition of h in the docs. |
---|
12 | // cap_radius is the radius of the lens |
---|
13 | // length is the cylinder length, or the separation between the lens halves |
---|
14 | // alpha is the angle of the cylinder wrt q. |
---|
15 | double _cap_kernel(double q, double h, double cap_radius, double length, |
---|
16 | double sin_alpha, double cos_alpha); |
---|
17 | double _cap_kernel(double q, double h, double cap_radius, double length, |
---|
18 | double sin_alpha, double cos_alpha) |
---|
19 | { |
---|
20 | // For speed, we are pre-calculating terms which are constant over the |
---|
21 | // kernel. |
---|
22 | const double upper = 1.0; |
---|
23 | const double lower = h/cap_radius; // integral lower bound |
---|
24 | // cos term in integral is: |
---|
25 | // cos (q (R t - h + L/2) cos(alpha)) |
---|
26 | // so turn it into: |
---|
27 | // cos (m t + b) |
---|
28 | // where: |
---|
29 | // m = q R cos(alpha) |
---|
30 | // b = q(L/2-h) cos(alpha) |
---|
31 | const double m = q*cap_radius*cos_alpha; // cos argument slope |
---|
32 | const double b = q*(0.5*length-h)*cos_alpha; // cos argument intercept |
---|
33 | const double qrst = q*cap_radius*sin_alpha; // Q*R*sin(theta) |
---|
34 | double total = 0.0; |
---|
35 | for (int i=0; i<76 ;i++) { |
---|
36 | // translate a point in [-1,1] to a point in [lower,upper] |
---|
37 | //const double t = ( Gauss76Z[i]*(upper-lower) + upper + lower )/2.0; |
---|
38 | const double t = 0.5*(Gauss76Z[i]*(upper-lower)+upper+lower); |
---|
39 | const double radical = 1.0 - t*t; |
---|
40 | const double arg = qrst*sqrt(radical); // cap bessel function arg |
---|
41 | const double be = (arg == 0.0 ? 0.5 : J1(arg)/arg); |
---|
42 | const double Fq = cos(m*t + b) * radical * be; |
---|
43 | total += Gauss76Wt[i] * Fq; |
---|
44 | } |
---|
45 | // translate dx in [-1,1] to dx in [lower,upper] |
---|
46 | //const double form = (upper-lower)/2.0*total; |
---|
47 | const double integral = 0.5*(upper-lower)*total; |
---|
48 | return 4.0*M_PI*cap_radius*cap_radius*cap_radius*integral; |
---|
49 | } |
---|
50 | |
---|
51 | double form_volume(double radius, double cap_radius, double length) |
---|
52 | { |
---|
53 | // cap radius should never be less than radius when this is called |
---|
54 | |
---|
55 | // Note: volume V = 2*V_cap + V_cyl |
---|
56 | // |
---|
57 | // V_cyl = pi r_cyl^2 L |
---|
58 | // V_cap = 1/6 pi h_c (3 r_cyl^2 + h_c^2) = 1/3 pi h_c^2 (3 r_cap - h_c) |
---|
59 | // |
---|
60 | // The docs for capped cylinder give the volume as: |
---|
61 | // V = pi r^2 L + 2/3 pi (R-h)^2 (2R + h) |
---|
62 | // where r_cap=R and h = R - h_c. |
---|
63 | // |
---|
64 | // The first part is clearly V_cyl. The second part requires some work: |
---|
65 | // (R-h)^2 => h_c^2 |
---|
66 | // (2R+h) => 2R+ h_c-h_c + h => 2R + (R-h)-hc + h => 3R-h_c |
---|
67 | // And so: |
---|
68 | // 2/3 pi (R-h)^2 (2R + h) => 2/3 pi h_c^2 (3 r_cap - h_c) |
---|
69 | // which is 2 V_cap, using the second form above. |
---|
70 | // |
---|
71 | // In this function we are going to use the first form of V_cap |
---|
72 | // |
---|
73 | // V = V_cyl + 2 V_cap |
---|
74 | // = pi r^2 L + pi hc (r^2 + hc^2/3) |
---|
75 | // = pi (r^2 (L+hc) + hc^3/3) |
---|
76 | const double hc = cap_radius - sqrt(cap_radius*cap_radius - radius*radius); |
---|
77 | return M_PI*(radius*radius*(length+hc) + 0.333333333333333*hc*hc*hc); |
---|
78 | } |
---|
79 | |
---|
80 | double Iq(double q, |
---|
81 | double sld, |
---|
82 | double solvent_sld, |
---|
83 | double radius, |
---|
84 | double cap_radius, |
---|
85 | double length) |
---|
86 | { |
---|
87 | double sn, cn; // slots to hold sincos function output |
---|
88 | |
---|
89 | // Exclude invalid inputs. |
---|
90 | if (cap_radius < radius) return NAN; |
---|
91 | |
---|
92 | const double lower = 0.0; |
---|
93 | const double upper = M_PI_2; |
---|
94 | const double h = sqrt(cap_radius*cap_radius - radius*radius); // negative h |
---|
95 | double total = 0.0; |
---|
96 | for (int i=0; i<76 ;i++) { |
---|
97 | // translate a point in [-1,1] to a point in [lower,upper] |
---|
98 | const double alpha= 0.5*(Gauss76Z[i]*(upper-lower) + upper + lower); |
---|
99 | SINCOS(alpha, sn, cn); |
---|
100 | |
---|
101 | const double cap_Fq = _cap_kernel(q, h, cap_radius, length, sn, cn); |
---|
102 | |
---|
103 | // The following is CylKernel() / sin(alpha), but we are doing it in place |
---|
104 | // to avoid sin(alpha)/sin(alpha) for alpha = 0. It is also a teensy bit |
---|
105 | // faster since we don't multiply and divide sin(alpha). |
---|
106 | const double besarg = q*radius*sn; |
---|
107 | const double siarg = q*0.5*length*cn; |
---|
108 | // lim_{x->0} J1(x)/x = 1/2, lim_{x->0} sin(x)/x = 1 |
---|
109 | const double bj = (besarg == 0.0 ? 0.5 : J1(besarg)/besarg); |
---|
110 | const double si = (siarg == 0.0 ? 1.0 : sin(siarg)/siarg); |
---|
111 | const double cyl_Fq = M_PI*radius*radius*length*2.0*bj*si; |
---|
112 | |
---|
113 | // Volume weighted average F(q) |
---|
114 | const double Aq = cyl_Fq + cap_Fq; |
---|
115 | total += Gauss76Wt[i] * Aq * Aq * sn; // sn for spherical coord integration |
---|
116 | } |
---|
117 | // translate dx in [-1,1] to dx in [lower,upper] |
---|
118 | const double form = total * 0.5*(upper-lower); |
---|
119 | |
---|
120 | // Multiply by contrast^2, normalize by cylinder volume and convert to cm-1 |
---|
121 | // NOTE that for this (Fournet) definition of the integral, one must MULTIPLY by Vcyl |
---|
122 | // The additional volume factor is for polydisperse volume normalization. |
---|
123 | const double s = (sld - solvent_sld); |
---|
124 | return 1.0e-4 * form * s * s; // form_volume(radius, cap_radius, length); |
---|
125 | } |
---|
126 | |
---|
127 | |
---|
128 | double Iqxy(double qx, double qy, |
---|
129 | double sld, |
---|
130 | double solvent_sld, |
---|
131 | double radius, |
---|
132 | double cap_radius, |
---|
133 | double length, |
---|
134 | double theta, |
---|
135 | double phi) |
---|
136 | { |
---|
137 | double sn, cn; // slots to hold sincos function output |
---|
138 | |
---|
139 | // Exclude invalid inputs. |
---|
140 | if (cap_radius < radius) return NAN; |
---|
141 | |
---|
142 | // Compute angle alpha between q and the cylinder axis |
---|
143 | SINCOS(theta*M_PI_180, sn, cn); |
---|
144 | // # The following correction factor exists in sasview, but it can't be |
---|
145 | // # right, so we are leaving it out for now. |
---|
146 | const double q = sqrt(qx*qx+qy*qy); |
---|
147 | const double cos_val = cn*cos(phi*M_PI_180)*(qx/q) + sn*(qy/q); |
---|
148 | const double alpha = acos(cos_val); // rod angle relative to q |
---|
149 | SINCOS(alpha, sn, cn); |
---|
150 | |
---|
151 | const double h = sqrt(cap_radius*cap_radius - radius*radius); // negative h |
---|
152 | const double cap_Fq = _cap_kernel(q, h, cap_radius, length, sn, cn); |
---|
153 | |
---|
154 | const double besarg = q*radius*sn; |
---|
155 | const double siarg = q*0.5*length*cn; |
---|
156 | // lim_{x->0} J1(x)/x = 1/2, lim_{x->0} sin(x)/x = 1 |
---|
157 | const double bj = (besarg == 0.0 ? 0.5 : J1(besarg)/besarg); |
---|
158 | const double si = (siarg == 0.0 ? 1.0 : sin(siarg)/siarg); |
---|
159 | const double cyl_Fq = M_PI*radius*radius*length*2.0*bj*si; |
---|
160 | |
---|
161 | // Volume weighted average F(q) |
---|
162 | const double Aq = cyl_Fq + cap_Fq; |
---|
163 | |
---|
164 | // Multiply by contrast^2, normalize by cylinder volume and convert to cm-1 |
---|
165 | const double s = (sld - solvent_sld); |
---|
166 | return 1.0e-4 * Aq * Aq * s * s; // form_volume(radius, cap_radius, length); |
---|
167 | } |
---|