source: sasmodels/sasmodels/models/capped_cylinder.c @ 5d4777d

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 5d4777d was 5d4777d, checked in by Paul Kienzle <pkienzle@…>, 10 years ago

reorganize, check and update models

  • Property mode set to 100644
File size: 6.4 KB
Line 
1real form_volume(real radius, real cap_radius, real length);
2real Iq(real q, real sld, real solvent_sld,
3    real radius, real cap_radius, real length);
4real Iqxy(real qx, real qy, real sld, real solvent_sld,
5    real radius, real cap_radius, real length, real theta, real phi);
6
7// Integral over a convex lens kernel for t in [h/R,1].  See the docs for
8// the definition of the function being integrated.
9//   q is the magnitude of the q vector.
10//   h is the length of the lens "inside" the cylinder.  This negative wrt the
11//       definition of h in the docs.
12//   cap_radius is the radius of the lens
13//   length is the cylinder length, or the separation between the lens halves
14//   alpha is the angle of the cylinder wrt q.
15real _cap_kernel(real q, real h, real cap_radius, real length,
16                 real sin_alpha, real cos_alpha);
17real _cap_kernel(real q, real h, real cap_radius, real length,
18                 real sin_alpha, real cos_alpha)
19{
20    // For speed, we are pre-calculating terms which are constant over the
21    // kernel.
22    const real upper = REAL(1.0);
23    const real lower = h/cap_radius; // integral lower bound
24    const real m = q*cos_alpha*cap_radius; // cos argument slope
25    const real b = q*cos_alpha*(REAL(0.5)*length-h); // cos argument intercept
26    const real qrst = q*sin_alpha*cap_radius; // Q*R*sin(theta)
27    real total = REAL(0.0);
28    for (int i=0; i<76 ;i++) {
29        // translate a point in [-1,1] to a point in [lower,upper]
30        //const real t = ( Gauss76Z[i]*(upper-lower) + upper + lower )/2.0;
31        const real t = REAL(0.5)*(Gauss76Z[i]*(upper-lower)+upper+lower);
32        const real radical = REAL(1.0) - t*t;
33        const real caparg = qrst*sqrt(radical); // cap bessel function arg
34        const real be = (caparg == REAL(0.0) ? REAL(0.5) : J1(caparg)/caparg);
35        const real Fq = cos(m*t + b) * radical * be;
36        total += Gauss76Wt[i] * Fq;
37    }
38    // translate dx in [-1,1] to dx in [lower,upper]
39    //const real form = (upper-lower)/2.0*total;
40    const real integral = REAL(0.5)*(upper-lower)*total;
41    return REAL(4.0)*M_PI*cap_radius*cap_radius*cap_radius*integral;
42}
43
44real form_volume(real radius, real cap_radius, real length)
45{
46    // cap radius should never be less than radius when this is called
47    // Note: cap volume = pi hc/6 * (3 a^2 + hc^2), where a is the cylinder
48    // radius and hc is the height of the cap.  Multiply by two for both ends.
49    // So:
50    //      cap V = pi hc (r^2 + hc^2/3)
51    //      cylinder V = pi r^2 L
52    //      V = cylinder V + cap V
53    //        = pi r^2 L + pi hc (r^2 + hc^2/3)
54    //        = pi * (r^2 (L+hc) + hc^3/3)
55    const real hc = cap_radius - sqrt(cap_radius*cap_radius - radius*radius);
56    return M_PI*(radius*radius*(length+hc) + REAL(0.333333333333333)*hc*hc*hc);
57}
58
59real Iq(real q,
60    real sld,
61    real solvent_sld,
62    real radius,
63    real cap_radius,
64    real length)
65{
66    real sn, cn; // slots to hold sincos function output
67
68    // Exclude invalid inputs.
69    if (cap_radius < radius) return REAL(-1.0);
70
71    const real lower = REAL(0.0);
72    const real upper = M_PI_2;
73    const real h = sqrt(cap_radius*cap_radius - radius*radius); // negative h
74    real total = REAL(0.0);
75    for (int i=0; i<76 ;i++) {
76        // translate a point in [-1,1] to a point in [lower,upper]
77        const real alpha= REAL(0.5)*(Gauss76Z[i]*(upper-lower) + upper + lower);
78        SINCOS(alpha, sn, cn);
79
80        const real cap_Fq = _cap_kernel(q, h, cap_radius, length, sn, cn);
81
82        // The following is CylKernel() / sin(alpha), but we are doing it in place
83        // to avoid sin(alpha)/sin(alpha) for alpha = 0.  It is also a teensy bit
84        // faster since we don't multiply and divide sin(alpha).
85        const real besarg = q*radius*sn;
86        const real siarg = REAL(0.5)*q*length*cn;
87        // lim_{x->0} J1(x)/x = 1/2,   lim_{x->0} sin(x)/x = 1
88        const real bj = (besarg == REAL(0.0) ? REAL(0.5) : J1(besarg)/besarg);
89        const real si = (siarg == REAL(0.0) ? REAL(1.0) : sin(siarg)/siarg);
90        const real cyl_Fq = M_PI*radius*radius*length*REAL(2.0)*bj*si;
91
92        // Volume weighted average F(q)
93        const real Aq = cyl_Fq + cap_Fq;
94        total += Gauss76Wt[i] * Aq * Aq * sn; // sn for spherical coord integration
95    }
96    // translate dx in [-1,1] to dx in [lower,upper]
97    const real form = total * REAL(0.5)*(upper-lower);
98
99    // Multiply by contrast^2, normalize by cylinder volume and convert to cm-1
100    // NOTE that for this (Fournet) definition of the integral, one must MULTIPLY by Vcyl
101    // The additional volume factor is for polydisperse volume normalization.
102    const real s = (sld - solvent_sld);
103    return REAL(1.0e-4) * form * s * s; // form_volume(radius, cap_radius, length);
104}
105
106
107real Iqxy(real qx, real qy,
108    real sld,
109    real solvent_sld,
110    real radius,
111    real cap_radius,
112    real length,
113    real theta,
114    real phi)
115{
116    real sn, cn; // slots to hold sincos function output
117
118    // Exclude invalid inputs.
119    if (cap_radius < radius) return REAL(-1.0);
120
121    // Compute angle alpha between q and the cylinder axis
122    SINCOS(theta*M_PI_180, sn, cn);
123    // # The following correction factor exists in sasview, but it can't be
124    // # right, so we are leaving it out for now.
125    const real q = sqrt(qx*qx+qy*qy);
126    const real cos_val = cn*cos(phi*M_PI_180)*(qx/q) + sn*(qy/q);
127    const real alpha = acos(cos_val); // rod angle relative to q
128    SINCOS(alpha, sn, cn);
129
130    const real h = sqrt(cap_radius*cap_radius - radius*radius); // negative h
131    const real cap_Fq = _cap_kernel(q, h, cap_radius, length, sn, cn);
132
133    // The following is CylKernel() / sin(alpha), but we are doing it in place
134    // to avoid sin(alpha)/sin(alpha) for alpha = 0.  It is also a teensy bit
135    // faster since we don't multiply and divide sin(alpha).
136    const real besarg = q*radius*sn;
137    const real siarg = REAL(0.5)*q*length*cn;
138    // lim_{x->0} J1(x)/x = 1/2,   lim_{x->0} sin(x)/x = 1
139    const real bj = (besarg == REAL(0.0) ? REAL(0.5) : J1(besarg)/besarg);
140    const real si = (siarg == REAL(0.0) ? REAL(1.0) : sin(siarg)/siarg);
141    const real cyl_Fq = M_PI*radius*radius*length*REAL(2.0)*bj*si;
142
143    // Volume weighted average F(q)
144    const real Aq = cyl_Fq + cap_Fq;
145
146    // Multiply by contrast^2, normalize by cylinder volume and convert to cm-1
147    const real s = (sld - solvent_sld);
148    return REAL(1.0e-4) * Aq * Aq * s * s; // form_volume(radius, cap_radius, length);
149}
Note: See TracBrowser for help on using the repository browser.