source: sasmodels/sasmodels/modelinfo.py @ 9d9fcbd

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 9d9fcbd was e3571cb, checked in by Paul Kienzle <pkienzle@…>, 7 years ago

allow comparison of 1D with integrated 2D

  • Property mode set to 100644
File size: 43.7 KB
Line 
1"""
2Model Info and Parameter Tables
3===============================
4
5Defines :class:`ModelInfo` and :class:`ParameterTable` and the routines for
6manipulating them.  In particular, :func:`make_model_info` converts a kernel
7module into the model info block as seen by the rest of the sasmodels library.
8"""
9from __future__ import print_function
10
11from copy import copy
12from os.path import abspath, basename, splitext
13import inspect
14
15import numpy as np  # type: ignore
16
17# Optional typing
18try:
19    from typing import Tuple, List, Union, Dict, Optional, Any, Callable, Sequence, Set
20except ImportError:
21    pass
22else:
23    Limits = Tuple[float, float]
24    #LimitsOrChoice = Union[Limits, Tuple[Sequence[str]]]
25    ParameterDef = Tuple[str, str, float, Limits, str, str]
26    ParameterSetUser = Dict[str, Union[float, List[float]]]
27    ParameterSet = Dict[str, float]
28    TestInput = Union[str, float, List[float], Tuple[float, float], List[Tuple[float, float]]]
29    TestValue = Union[float, List[float]]
30    TestCondition = Tuple[ParameterSetUser, TestInput, TestValue]
31
32MAX_PD = 4 #: Maximum number of simultaneously polydisperse parameters
33
34# assumptions about common parameters exist throughout the code, such as:
35# (1) kernel functions Iq, Iqxy, form_volume, ... don't see them
36# (2) kernel drivers assume scale is par[0] and background is par[1]
37# (3) mixture models drop the background on components and replace the scale
38#     with a scale that varies from [-inf, inf]
39# (4) product models drop the background and reassign scale
40# and maybe other places.
41# Note that scale and background cannot be coordinated parameters whose value
42# depends on the some polydisperse parameter with the current implementation
43COMMON_PARAMETERS = [
44    ("scale", "", 1, (0.0, np.inf), "", "Source intensity"),
45    ("background", "1/cm", 1e-3, (-np.inf, np.inf), "", "Source background"),
46]
47assert (len(COMMON_PARAMETERS) == 2
48        and COMMON_PARAMETERS[0][0] == "scale"
49        and COMMON_PARAMETERS[1][0] == "background"), "don't change common parameters"
50
51
52def make_parameter_table(pars):
53    # type: (List[ParameterDef]) -> ParameterTable
54    """
55    Construct a parameter table from a list of parameter definitions.
56
57    This is used by the module processor to convert the parameter block into
58    the parameter table seen in the :class:`ModelInfo` for the module.
59    """
60    processed = []
61    for p in pars:
62        if not isinstance(p, (list, tuple)) or len(p) != 6:
63            raise ValueError("Parameter should be [name, units, default, limits, type, desc], but got %r"
64                             %str(p))
65        processed.append(parse_parameter(*p))
66    partable = ParameterTable(processed)
67    return partable
68
69def parse_parameter(name, units='', default=np.NaN,
70                    user_limits=None, ptype='', description=''):
71    # type: (str, str, float, Sequence[Any], str, str) -> Parameter
72    """
73    Parse an individual parameter from the parameter definition block.
74
75    This does type and value checking on the definition, leading
76    to early failure in the model loading process and easier debugging.
77    """
78    # Parameter is a user facing class.  Do robust type checking.
79    if not isstr(name):
80        raise ValueError("expected string for parameter name %r"%name)
81    if not isstr(units):
82        raise ValueError("expected units to be a string for %s"%name)
83
84    # Process limits as [float, float] or [[str, str, ...]]
85    choices = []  # type: List[str]
86    if user_limits is None:
87        limits = (-np.inf, np.inf)
88    elif not isinstance(user_limits, (tuple, list)):
89        raise ValueError("invalid limits for %s"%name)
90    else:
91        # if limits is [[str,...]], then this is a choice list field,
92        # and limits are 1 to length of string list
93        if isinstance(user_limits[0], (tuple, list)):
94            choices = user_limits[0]
95            limits = (0., len(choices)-1.)
96            if not all(isstr(k) for k in choices):
97                raise ValueError("choices must be strings for %s"%name)
98        else:
99            try:
100                low, high = user_limits
101                limits = (float(low), float(high))
102            except Exception:
103                raise ValueError("invalid limits for %s: %r"%(name, user_limits))
104            if low >= high:
105                raise ValueError("require lower limit < upper limit")
106
107    # Process default value as float, making sure it is in range
108    if not isinstance(default, (int, float)):
109        raise ValueError("expected default %r to be a number for %s"
110                         % (default, name))
111    if default < limits[0] or default > limits[1]:
112        raise ValueError("default value %r not in range for %s"
113                         % (default, name))
114
115    # Check for valid parameter type
116    if ptype not in ("volume", "orientation", "sld", "magnetic", ""):
117        raise ValueError("unexpected type %r for %s" % (ptype, name))
118
119    # Check for valid parameter description
120    if not isstr(description):
121        raise ValueError("expected description to be a string")
122
123    # Parameter id for name[n] does not include [n]
124    if "[" in name:
125        if not name.endswith(']'):
126            raise ValueError("Expected name[len] for vector parameter %s"%name)
127        pid, ref = name[:-1].split('[', 1)
128        ref = ref.strip()
129    else:
130        pid, ref = name, None
131
132    # automatically identify sld types
133    if ptype == '' and (pid.startswith('sld') or pid.endswith('sld')):
134        ptype = 'sld'
135
136    # Check if using a vector definition, name[k], as the parameter name
137    if ref:
138        if ref == '':
139            raise ValueError("Need to specify vector length for %s"%name)
140        try:
141            length = int(ref)
142            control = None
143        except ValueError:
144            length = None
145            control = ref
146    else:
147        length = 1
148        control = None
149
150    # Build the parameter
151    parameter = Parameter(name=name, units=units, default=default,
152                          limits=limits, ptype=ptype, description=description)
153
154    # TODO: need better control over whether a parameter is polydisperse
155    parameter.polydisperse = ptype in ('orientation', 'volume')
156    parameter.relative_pd = ptype == 'volume'
157    parameter.choices = choices
158    parameter.length = length
159    parameter.length_control = control
160
161    return parameter
162
163
164def expand_pars(partable, pars):
165    # type: (ParameterTable, ParameterSetUser) ->  ParameterSet
166    """
167    Create demo parameter set from key-value pairs.
168
169    *pars* are the key-value pairs to use for the parameters.  Any
170    parameters not specified in *pars* are set from the *partable* defaults.
171
172    If *pars* references vector fields, such as thickness[n], then support
173    different ways of assigning the demo values, including assigning a
174    specific value (e.g., thickness3=50.0), assigning a new value to all
175    (e.g., thickness=50.0) or assigning values using list notation.
176    """
177    if pars is None:
178        result = partable.defaults
179    else:
180        lookup = dict((p.id, p) for p in partable.kernel_parameters)
181        result = partable.defaults.copy()
182        scalars = dict((name, value) for name, value in pars.items()
183                       if name not in lookup or lookup[name].length == 1)
184        vectors = dict((name, value) for name, value in pars.items()
185                       if name in lookup and lookup[name].length > 1)
186        #print("lookup", lookup)
187        #print("scalars", scalars)
188        #print("vectors", vectors)
189        if vectors:
190            for name, value in vectors.items():
191                if np.isscalar(value):
192                    # support for the form
193                    #    dict(thickness=0, thickness2=50)
194                    for k in range(1, lookup[name].length+1):
195                        key = name+str(k)
196                        if key not in scalars:
197                            scalars[key] = value
198                else:
199                    # supoprt for the form
200                    #    dict(thickness=[20,10,3])
201                    for (k, v) in enumerate(value):
202                        scalars[name+str(k+1)] = v
203        result.update(scalars)
204        #print("expanded", result)
205
206    return result
207
208def prefix_parameter(par, prefix):
209    # type: (Parameter, str) -> Parameter
210    """
211    Return a copy of the parameter with its name prefixed.
212    """
213    new_par = copy(par)
214    new_par.name = prefix + par.name
215    new_par.id = prefix + par.id
216
217def suffix_parameter(par, suffix):
218    # type: (Parameter, str) -> Parameter
219    """
220    Return a copy of the parameter with its name prefixed.
221    """
222    new_par = copy(par)
223    # If name has the form x[n], replace with x_suffix[n]
224    new_par.name = par.id + suffix + par.name[len(par.id):]
225    new_par.id = par.id + suffix
226
227class Parameter(object):
228    """
229    The available kernel parameters are defined as a list, with each parameter
230    defined as a sublist with the following elements:
231
232    *name* is the name that will be displayed to the user.  Names
233    should be lower case, with words separated by underscore.  If
234    acronyms are used, the whole acronym should be upper case. For vector
235    parameters, the name will be followed by *[len]* where *len* is an
236    integer length of the vector, or the name of the parameter which
237    controls the length.  The attribute *id* will be created from name
238    without the length.
239
240    *units* should be one of *degrees* for angles, *Ang* for lengths,
241    *1e-6/Ang^2* for SLDs.
242
243    *default value* will be the initial value for  the model when it
244    is selected, or when an initial value is not otherwise specified.
245
246    *limits = [lb, ub]* are the hard limits on the parameter value, used to
247    limit the polydispersity density function.  In the fit, the parameter limits
248    given to the fit are the limits  on the central value of the parameter.
249    If there is polydispersity, it will evaluate parameter values outside
250    the fit limits, but not outside the hard limits specified in the model.
251    If there are no limits, use +/-inf imported from numpy.
252
253    *type* indicates how the parameter will be used.  "volume" parameters
254    will be used in all functions.  "orientation" parameters will be used
255    in *Iqxy* and *Imagnetic*.  "magnetic* parameters will be used in
256    *Imagnetic* only.  If *type* is the empty string, the parameter will
257    be used in all of *Iq*, *Iqxy* and *Imagnetic*.  "sld" parameters
258    can automatically be promoted to magnetic parameters, each of which
259    will have a magnitude and a direction, which may be different from
260    other sld parameters. The volume parameters are used for calls
261    to form_volume within the kernel (required for volume normalization)
262    and for calls to ER and VR for effective radius and volume ratio
263    respectively.
264
265    *description* is a short description of the parameter.  This will
266    be displayed in the parameter table and used as a tool tip for the
267    parameter value in the user interface.
268
269    Additional values can be set after the parameter is created:
270
271    * *length* is the length of the field if it is a vector field
272
273    * *length_control* is the parameter which sets the vector length
274
275    * *is_control* is True if the parameter is a control parameter for a vector
276
277    * *polydisperse* is true if the parameter accepts a polydispersity
278
279    * *relative_pd* is true if that polydispersity is a portion of the
280      value (so a 10% length dipsersity would use a polydispersity value
281      of 0.1) rather than absolute dispersisity (such as an angle plus or
282      minus 15 degrees).
283
284    *choices* is the option names for a drop down list of options, as for
285    example, might be used to set the value of a shape parameter.
286
287    These values are set by :func:`make_parameter_table` and
288    :func:`parse_parameter` therein.
289    """
290    def __init__(self, name, units='', default=None, limits=(-np.inf, np.inf),
291                 ptype='', description=''):
292        # type: (str, str, float, Limits, str, str) -> None
293        self.id = name.split('[')[0].strip() # type: str
294        self.name = name                     # type: str
295        self.units = units                   # type: str
296        self.default = default               # type: float
297        self.limits = limits                 # type: Limits
298        self.type = ptype                    # type: str
299        self.description = description       # type: str
300
301        # Length and length_control will be filled in once the complete
302        # parameter table is available.
303        self.length = 1                      # type: int
304        self.length_control = None           # type: Optional[str]
305        self.is_control = False              # type: bool
306
307        # TODO: need better control over whether a parameter is polydisperse
308        self.polydisperse = False            # type: bool
309        self.relative_pd = False             # type: bool
310
311        # choices are also set externally.
312        self.choices = []                    # type: List[str]
313
314    def as_definition(self):
315        # type: () -> str
316        """
317        Declare space for the variable in a parameter structure.
318
319        For example, the parameter thickness with length 3 will
320        return "double thickness[3];", with no spaces before and
321        no new line character afterward.
322        """
323        if self.length == 1:
324            return "double %s;"%self.id
325        else:
326            return "double %s[%d];"%(self.id, self.length)
327
328    def as_function_argument(self):
329        # type: () -> str
330        r"""
331        Declare the variable as a function argument.
332
333        For example, the parameter thickness with length 3 will
334        return "double \*thickness", with no spaces before and
335        no comma afterward.
336        """
337        if self.length == 1:
338            return "double %s"%self.id
339        else:
340            return "double *%s"%self.id
341
342    def as_call_reference(self, prefix=""):
343        # type: (str) -> str
344        """
345        Return *prefix* + parameter name.  For struct references, use "v."
346        as the prefix.
347        """
348        # Note: if the parameter is a struct type, then we will need to use
349        # &prefix+id.  For scalars and vectors we can just use prefix+id.
350        return prefix + self.id
351
352    def __str__(self):
353        # type: () -> str
354        return "<%s>"%self.name
355
356    def __repr__(self):
357        # type: () -> str
358        return "P<%s>"%self.name
359
360
361class ParameterTable(object):
362    """
363    ParameterTable manages the list of available parameters.
364
365    There are a couple of complications which mean that the list of parameters
366    for the kernel differs from the list of parameters that the user sees.
367
368    (1) Common parameters.  Scale and background are implicit to every model,
369    but are not passed to the kernel.
370
371    (2) Vector parameters.  Vector parameters are passed to the kernel as a
372    pointer to an array, e.g., thick[], but they are seen by the user as n
373    separate parameters thick1, thick2, ...
374
375    Therefore, the parameter table is organized by how it is expected to be
376    used. The following information is needed to set up the kernel functions:
377
378    * *kernel_parameters* is the list of parameters in the kernel parameter
379      table, with vector parameter p declared as p[].
380
381    * *iq_parameters* is the list of parameters to the Iq(q, ...) function,
382      with vector parameter p sent as p[].
383
384    * [removed] *iqxy_parameters* is the list of parameters to the Iqxy(qx, qy, ...)
385      function, with vector parameter p sent as p[].
386
387    * *form_volume_parameters* is the list of parameters to the form_volume(...)
388      function, with vector parameter p sent as p[].
389
390    Problem details, which sets up the polydispersity loops, requires the
391    following:
392
393    * *theta_offset* is the offset of the theta parameter in the kernel parameter
394      table, with vector parameters counted as n individual parameters
395      p1, p2, ..., or offset is -1 if there is no theta parameter.
396
397    * *max_pd* is the maximum number of polydisperse parameters, with vector
398      parameters counted as n individual parameters p1, p2, ...  Note that
399      this number is limited to sasmodels.modelinfo.MAX_PD.
400
401    * *npars* is the total number of parameters to the kernel, with vector
402      parameters counted as n individual parameters p1, p2, ...
403
404    * *call_parameters* is the complete list of parameters to the kernel,
405      including scale and background, with vector parameters recorded as
406      individual parameters p1, p2, ...
407
408    * *active_1d* is the set of names that may be polydisperse for 1d data
409
410    * *active_2d* is the set of names that may be polydisperse for 2d data
411
412    User parameters are the set of parameters visible to the user, including
413    the scale and background parameters that the kernel does not see.  User
414    parameters don't use vector notation, and instead use p1, p2, ...
415    """
416    # scale and background are implicit parameters
417    COMMON = [Parameter(*p) for p in COMMON_PARAMETERS]
418
419    def __init__(self, parameters):
420        # type: (List[Parameter]) -> None
421        self.kernel_parameters = parameters
422        self._check_angles()
423        self._set_vector_lengths()
424
425        self.npars = sum(p.length for p in self.kernel_parameters)
426        self.nmagnetic = sum(p.length for p in self.kernel_parameters
427                             if p.type == 'sld')
428        self.nvalues = 2 + self.npars
429        if self.nmagnetic:
430            self.nvalues += 3 + 3*self.nmagnetic
431
432        self.call_parameters = self._get_call_parameters()
433        self.defaults = self._get_defaults()
434        #self._name_table= dict((p.id, p) for p in parameters)
435
436        # Set the kernel parameters.  Assumes background and scale are the
437        # first two parameters in the parameter list, but these are not sent
438        # to the underlying kernel functions.
439        self.iq_parameters = [p for p in self.kernel_parameters
440                              if p.type not in ('orientation', 'magnetic')]
441        # note: orientation no longer sent to Iqxy, so its the same as
442        #self.iqxy_parameters = [p for p in self.kernel_parameters
443        #                        if p.type != 'magnetic']
444        self.form_volume_parameters = [p for p in self.kernel_parameters
445                                       if p.type == 'volume']
446
447        # Theta offset
448        offset = 0
449        for p in self.kernel_parameters:
450            if p.name == 'theta':
451                self.theta_offset = offset
452                break
453            offset += p.length
454        else:
455            self.theta_offset = -1
456
457        # number of polydisperse parameters
458        num_pd = sum(p.length for p in self.kernel_parameters if p.polydisperse)
459        # Don't use more polydisperse parameters than are available in the model
460        self.max_pd = min(num_pd, MAX_PD)
461
462        # true if has 2D parameters
463        self.has_2d = any(p.type in ('orientation', 'magnetic')
464                          for p in self.kernel_parameters)
465        self.is_asymmetric = any(p.name == 'psi' for p in self.kernel_parameters)
466        self.magnetism_index = [k for k, p in enumerate(self.call_parameters)
467                                if p.id.startswith('M0:')]
468
469        self.pd_1d = set(p.name for p in self.call_parameters
470                         if p.polydisperse and p.type not in ('orientation', 'magnetic'))
471        self.pd_2d = set(p.name for p in self.call_parameters if p.polydisperse)
472
473    def _check_angles(self):
474        theta = phi = psi = -1
475        for k, p in enumerate(self.kernel_parameters):
476            if p.name == 'theta':
477                theta = k
478                if p.type != 'orientation':
479                    raise TypeError("theta must be an orientation parameter")
480            elif p.name == 'phi':
481                phi = k
482                if p.type != 'orientation':
483                    raise TypeError("phi must be an orientation parameter")
484            elif p.name == 'psi':
485                psi = k
486                if p.type != 'orientation':
487                    raise TypeError("psi must be an orientation parameter")
488        if theta >= 0 and phi >= 0:
489            if phi != theta+1:
490                raise TypeError("phi must follow theta")
491            if psi >= 0 and psi != phi+1:
492                raise TypeError("psi must follow phi")
493        elif theta >= 0 or phi >= 0 or psi >= 0:
494            raise TypeError("oriented shapes must have both theta and phi and maybe psi")
495
496    def __getitem__(self, key):
497        # Find the parameter definition
498        for par in self.call_parameters:
499            if par.name == key:
500                break
501        else:
502            raise KeyError("unknown parameter %r"%key)
503        return par
504
505    def __contains__(self, key):
506        for par in self.call_parameters:
507            if par.name == key:
508                return True
509        else:
510            return False
511
512    def _set_vector_lengths(self):
513        # type: () -> List[str]
514        """
515        Walk the list of kernel parameters, setting the length field of the
516        vector parameters from the upper limit of the reference parameter.
517
518        This needs to be done once the entire parameter table is available
519        since the reference may still be undefined when the parameter is
520        initially created.
521
522        Returns the list of control parameter names.
523
524        Note: This modifies the underlying parameter object.
525        """
526        # Sort out the length of the vector parameters such as thickness[n]
527
528        for p in self.kernel_parameters:
529            if p.length_control:
530                for ref in self.kernel_parameters:
531                    if ref.id == p.length_control:
532                        break
533                else:
534                    raise ValueError("no reference variable %r for %s"
535                                     % (p.length_control, p.name))
536                ref.is_control = True
537                ref.polydisperse = False
538                low, high = ref.limits
539                if int(low) != low or int(high) != high or low < 0 or high > 20:
540                    raise ValueError("expected limits on %s to be within [0, 20]"
541                                     % ref.name)
542                p.length = int(high)
543
544    def _get_defaults(self):
545        # type: () -> ParameterSet
546        """
547        Get a list of parameter defaults from the parameters.
548
549        Expands vector parameters into parameter id+number.
550        """
551        # Construct default values, including vector defaults
552        defaults = {}
553        for p in self.call_parameters:
554            if p.length == 1:
555                defaults[p.id] = p.default
556            else:
557                for k in range(1, p.length+1):
558                    defaults["%s%d"%(p.id, k)] = p.default
559        return defaults
560
561    def _get_call_parameters(self):
562        # type: () -> List[Parameter]
563        full_list = self.COMMON[:]
564        for p in self.kernel_parameters:
565            if p.length == 1:
566                full_list.append(p)
567            else:
568                for k in range(1, p.length+1):
569                    pk = Parameter(p.id+str(k), p.units, p.default,
570                                   p.limits, p.type, p.description)
571                    pk.polydisperse = p.polydisperse
572                    pk.relative_pd = p.relative_pd
573                    pk.choices = p.choices
574                    full_list.append(pk)
575
576        # Add the magnetic parameters to the end of the call parameter list.
577        if self.nmagnetic > 0:
578            full_list.extend([
579                Parameter('up:frac_i', '', 0., [0., 1.],
580                          'magnetic', 'fraction of spin up incident'),
581                Parameter('up:frac_f', '', 0., [0., 1.],
582                          'magnetic', 'fraction of spin up final'),
583                Parameter('up:angle', 'degress', 0., [0., 360.],
584                          'magnetic', 'spin up angle'),
585            ])
586            slds = [p for p in full_list if p.type == 'sld']
587            for p in slds:
588                full_list.extend([
589                    Parameter('M0:'+p.id, '1e-6/Ang^2', 0., [-np.inf, np.inf],
590                              'magnetic', 'magnetic amplitude for '+p.description),
591                    Parameter('mtheta:'+p.id, 'degrees', 0., [-90., 90.],
592                              'magnetic', 'magnetic latitude for '+p.description),
593                    Parameter('mphi:'+p.id, 'degrees', 0., [-180., 180.],
594                              'magnetic', 'magnetic longitude for '+p.description),
595                ])
596        #print("call parameters", full_list)
597        return full_list
598
599    def user_parameters(self, pars, is2d=True):
600        # type: (Dict[str, float], bool) -> List[Parameter]
601        """
602        Return the list of parameters for the given data type.
603
604        Vector parameters are expanded in place.  If multiple parameters
605        share the same vector length, then the parameters will be interleaved
606        in the result.  The control parameters come first.  For example,
607        if the parameter table is ordered as::
608
609            sld_core
610            sld_shell[num_shells]
611            sld_solvent
612            thickness[num_shells]
613            num_shells
614
615        and *pars[num_shells]=2* then the returned list will be::
616
617            num_shells
618            scale
619            background
620            sld_core
621            sld_shell1
622            thickness1
623            sld_shell2
624            thickness2
625            sld_solvent
626
627        Note that shell/thickness pairs are grouped together in the result
628        even though they were not grouped in the incoming table.  The control
629        parameter is always returned first since the GUI will want to set it
630        early, and rerender the table when it is changed.
631
632        Parameters marked as sld will automatically have a set of associated
633        magnetic parameters (m0:p, mtheta:p, mphi:p), as well as polarization
634        information (up:theta, up:frac_i, up:frac_f).
635        """
636        # control parameters go first
637        control = [p for p in self.kernel_parameters if p.is_control]
638
639        # Gather entries such as name[n] into groups of the same n
640        dependent = {} # type: Dict[str, List[Parameter]]
641        dependent.update((p.id, []) for p in control)
642        for p in self.kernel_parameters:
643            if p.length_control is not None:
644                dependent[p.length_control].append(p)
645
646        # Gather entries such as name[4] into groups of the same length
647        fixed_length = {}  # type: Dict[int, List[Parameter]]
648        for p in self.kernel_parameters:
649            if p.length > 1 and p.length_control is None:
650                fixed_length.setdefault(p.length, []).append(p)
651
652        # Using the call_parameters table, we already have expanded forms
653        # for each of the vector parameters; put them in a lookup table
654        # Note: p.id and p.name are currently identical for the call parameters
655        expanded_pars = dict((p.id, p) for p in self.call_parameters)
656
657        def append_group(name):
658            """add the named parameter, and related magnetic parameters if any"""
659            result.append(expanded_pars[name])
660            if is2d:
661                for tag in 'M0:', 'mtheta:', 'mphi:':
662                    if tag+name in expanded_pars:
663                        result.append(expanded_pars[tag+name])
664
665        # Gather the user parameters in order
666        result = control + self.COMMON
667        for p in self.kernel_parameters:
668            if not is2d and p.type in ('orientation', 'magnetic'):
669                pass
670            elif p.is_control:
671                pass # already added
672            elif p.length_control is not None:
673                table = dependent.get(p.length_control, [])
674                if table:
675                    # look up length from incoming parameters
676                    table_length = int(pars.get(p.length_control, p.length))
677                    del dependent[p.length_control] # first entry seen
678                    for k in range(1, table_length+1):
679                        for entry in table:
680                            append_group(entry.id+str(k))
681                else:
682                    pass # already processed all entries
683            elif p.length > 1:
684                table = fixed_length.get(p.length, [])
685                if table:
686                    table_length = p.length
687                    del fixed_length[p.length]
688                    for k in range(1, table_length+1):
689                        for entry in table:
690                            append_group(entry.id+str(k))
691                else:
692                    pass # already processed all entries
693            else:
694                append_group(p.id)
695
696        if is2d and 'up:angle' in expanded_pars:
697            result.extend([
698                expanded_pars['up:frac_i'],
699                expanded_pars['up:frac_f'],
700                expanded_pars['up:angle'],
701            ])
702
703        return result
704
705def isstr(x):
706    # type: (Any) -> bool
707    """
708    Return True if the object is a string.
709    """
710    # TODO: 2-3 compatible tests for str, including unicode strings
711    return isinstance(x, str)
712
713
714def _find_source_lines(model_info, kernel_module):
715    """
716    Identify the location of the C source inside the model definition file.
717
718    This code runs through the source of the kernel module looking for
719    lines that start with 'Iq', 'Iqxy' or 'form_volume'.  Clearly there are
720    all sorts of reasons why this might not work (e.g., code commented out
721    in a triple-quoted line block, code built using string concatenation,
722    or code defined in the branch of an 'if' block), but it should work
723    properly in the 95% case, and getting the incorrect line number will
724    be harmless.
725    """
726    # Check if we need line numbers at all
727    if callable(model_info.Iq):
728        return None
729
730    if (model_info.Iq is None
731            and model_info.Iqxy is None
732            and model_info.Imagnetic is None
733            and model_info.form_volume is None):
734        return
735
736    # find the defintion lines for the different code blocks
737    try:
738        source = inspect.getsource(kernel_module)
739    except IOError:
740        return
741    for k, v in enumerate(source.split('\n')):
742        if v.startswith('Imagnetic'):
743            model_info._Imagnetic_line = k+1
744        elif v.startswith('Iqxy'):
745            model_info._Iqxy_line = k+1
746        elif v.startswith('Iq'):
747            model_info._Iq_line = k+1
748        elif v.startswith('form_volume'):
749            model_info._form_volume_line = k+1
750
751
752def make_model_info(kernel_module):
753    # type: (module) -> ModelInfo
754    """
755    Extract the model definition from the loaded kernel module.
756
757    Fill in default values for parts of the module that are not provided.
758
759    Note: vectorized Iq and Iqxy functions will be created for python
760    models when the model is first called, not when the model is loaded.
761    """
762    if hasattr(kernel_module, "model_info"):
763        # Custom sum/multi models
764        return kernel_module.model_info
765    info = ModelInfo()
766    #print("make parameter table", kernel_module.parameters)
767    parameters = make_parameter_table(getattr(kernel_module, 'parameters', []))
768    demo = expand_pars(parameters, getattr(kernel_module, 'demo', None))
769    filename = abspath(kernel_module.__file__).replace('.pyc', '.py')
770    kernel_id = splitext(basename(filename))[0]
771    name = getattr(kernel_module, 'name', None)
772    if name is None:
773        name = " ".join(w.capitalize() for w in kernel_id.split('_'))
774
775    info.id = kernel_id  # string used to load the kernel
776    info.filename = filename
777    info.name = name
778    info.title = getattr(kernel_module, 'title', name+" model")
779    info.description = getattr(kernel_module, 'description', 'no description')
780    info.parameters = parameters
781    info.demo = demo
782    info.composition = None
783    info.docs = kernel_module.__doc__
784    info.category = getattr(kernel_module, 'category', None)
785    info.structure_factor = getattr(kernel_module, 'structure_factor', False)
786    info.profile_axes = getattr(kernel_module, 'profile_axes', ['x', 'y'])
787    info.source = getattr(kernel_module, 'source', [])
788    # TODO: check the structure of the tests
789    info.tests = getattr(kernel_module, 'tests', [])
790    info.ER = getattr(kernel_module, 'ER', None) # type: ignore
791    info.VR = getattr(kernel_module, 'VR', None) # type: ignore
792    info.form_volume = getattr(kernel_module, 'form_volume', None) # type: ignore
793    info.Iq = getattr(kernel_module, 'Iq', None) # type: ignore
794    info.Iqxy = getattr(kernel_module, 'Iqxy', None) # type: ignore
795    info.Imagnetic = getattr(kernel_module, 'Imagnetic', None) # type: ignore
796    info.profile = getattr(kernel_module, 'profile', None) # type: ignore
797    info.sesans = getattr(kernel_module, 'sesans', None) # type: ignore
798    # Default single and opencl to True for C models.  Python models have callable Iq.
799    info.opencl = getattr(kernel_module, 'opencl', not callable(info.Iq))
800    info.single = getattr(kernel_module, 'single', not callable(info.Iq))
801    info.random = getattr(kernel_module, 'random', None)
802
803    # multiplicity info
804    control_pars = [p.id for p in parameters.kernel_parameters if p.is_control]
805    default_control = control_pars[0] if control_pars else None
806    info.control = getattr(kernel_module, 'control', default_control)
807    info.hidden = getattr(kernel_module, 'hidden', None) # type: ignore
808
809    _find_source_lines(info, kernel_module)
810
811    return info
812
813class ModelInfo(object):
814    """
815    Interpret the model definition file, categorizing the parameters.
816
817    The module can be loaded with a normal python import statement if you
818    know which module you need, or with __import__('sasmodels.model.'+name)
819    if the name is in a string.
820
821    The structure should be mostly static, other than the delayed definition
822    of *Iq* and *Iqxy* if they need to be defined.
823    """
824    #: Full path to the file defining the kernel, if any.
825    filename = None         # type: Optional[str]
826    #: Id of the kernel used to load it from the filesystem.
827    id = None               # type: str
828    #: Display name of the model, which defaults to the model id but with
829    #: capitalization of the parts so for example core_shell defaults to
830    #: "Core Shell".
831    name = None             # type: str
832    #: Short description of the model.
833    title = None            # type: str
834    #: Long description of the model.
835    description = None      # type: str
836    #: Model parameter table. Parameters are defined using a list of parameter
837    #: definitions, each of which is contains parameter name, units,
838    #: default value, limits, type and description.  See :class:`Parameter`
839    #: for details on the individual parameters.  The parameters are gathered
840    #: into a :class:`ParameterTable`, which provides various views into the
841    #: parameter list.
842    parameters = None       # type: ParameterTable
843    #: Demo parameters as a *parameter:value* map used as the default values
844    #: for :mod:`compare`.  Any parameters not set in *demo* will use the
845    #: defaults from the parameter table.  That means no polydispersity, and
846    #: in the case of multiplicity models, a minimal model with no interesting
847    #: scattering.
848    demo = None             # type: Dict[str, float]
849    #: Composition is None if this is an independent model, or it is a
850    #: tuple with comoposition type ('product' or 'misture') and a list of
851    #: :class:`ModelInfo` blocks for the composed objects.  This allows us
852    #: to rebuild a complete mixture or product model from the info block.
853    #: *composition* is not given in the model definition file, but instead
854    #: arises when the model is constructed using names such as
855    #: *sphere*hardsphere* or *cylinder+sphere*.
856    composition = None      # type: Optional[Tuple[str, List[ModelInfo]]]
857    #: Name of the control parameter for a variant model such as :ref:`rpa`.
858    #: The *control* parameter should appear in the parameter table, with
859    #: limits defined as *[CASES]*, for case names such as
860    #: *CASES = ["diblock copolymer", "triblock copolymer", ...]*.
861    #: This should give *limits=[[case1, case2, ...]]*, but the
862    #: model loader translates this to *limits=[0, len(CASES)-1]*, and adds
863    #: *choices=CASES* to the :class:`Parameter` definition. Note that
864    #: models can use a list of cases as a parameter without it being a
865    #: control parameter.  Either way, the parameter is sent to the model
866    #: evaluator as *float(choice_num)*, where choices are numbered from 0.
867    #: See also :attr:`hidden`.
868    control = None          # type: str
869    #: Different variants require different parameters.  In order to show
870    #: just the parameters needed for the variant selected by :attr:`control`,
871    #: you should provide a function *hidden(control) -> set(['a', 'b', ...])*
872    #: indicating which parameters need to be hidden.  For multiplicity
873    #: models, you need to use the complete name of the parameter, including
874    #: its number.  So for example, if variant "a" uses only *sld1* and *sld2*,
875    #: then *sld3*, *sld4* and *sld5* of multiplicity parameter *sld[5]*
876    #: should be in the hidden set.
877    hidden = None           # type: Optional[Callable[[int], Set[str]]]
878    #: Doc string from the top of the model file.  This should be formatted
879    #: using ReStructuredText format, with latex markup in ".. math"
880    #: environments, or in dollar signs.  This will be automatically
881    #: extracted to a .rst file by :func:`generate.make_docs`, then
882    #: converted to HTML or PDF by Sphinx.
883    docs = None             # type: str
884    #: Location of the model description in the documentation.  This takes the
885    #: form of "section" or "section:subsection".  So for example,
886    #: :ref:`porod` uses *category="shape-independent"* so it is in the
887    #: :ref:`shape-independent` section whereas
888    #: :ref:`capped-cylinder` uses: *category="shape:cylinder"*, which puts
889    #: it in the :ref:`shape-cylinder` section.
890    category = None         # type: Optional[str]
891    #: True if the model can be computed accurately with single precision.
892    #: This is True by default, but models such as :ref:`bcc-paracrystal` set
893    #: it to False because they require double precision calculations.
894    single = None           # type: bool
895    #: True if the model can be run as an opencl model.  If for some reason
896    #: the model cannot be run in opencl (e.g., because the model passes
897    #: functions by reference), then set this to false.
898    opencl = None           # type: bool
899    #: True if the model is a structure factor used to model the interaction
900    #: between form factor models.  This will default to False if it is not
901    #: provided in the file.
902    structure_factor = None # type: bool
903    #: List of C source files used to define the model.  The source files
904    #: should define the *Iq* function, and possibly *Iqxy*, though a default
905    #: *Iqxy = Iq(sqrt(qx**2+qy**2)* will be created if no *Iqxy* is provided.
906    #: Files containing the most basic functions must appear first in the list,
907    #: followed by the files that use those functions.  Form factors are
908    #: indicated by providing a :attr:`ER` function.
909    source = None           # type: List[str]
910    #: The set of tests that must pass.  The format of the tests is described
911    #: in :mod:`model_test`.
912    tests = None            # type: List[TestCondition]
913    #: Returns the effective radius of the model given its volume parameters.
914    #: The presence of *ER* indicates that the model is a form factor model
915    #: that may be used together with a structure factor to form an implicit
916    #: multiplication model.
917    #:
918    #: The parameters to the *ER* function must be marked with type *volume*.
919    #: in the parameter table.  They will appear in the same order as they
920    #: do in the table.  The values passed to *ER* will be vectors, with one
921    #: value for each polydispersity condition.  For example, if the model
922    #: is polydisperse over both length and radius, then both length and
923    #: radius will have the same number of values in the vector, with one
924    #: value for each *length X radius*.  If only *radius* is polydisperse,
925    #: then the value for *length* will be repeated once for each value of
926    #: *radius*.  The *ER* function should return one effective radius for
927    #: each parameter set.  Multiplicity parameters will be received as
928    #: arrays, with one row per polydispersity condition.
929    ER = None               # type: Optional[Callable[[np.ndarray], np.ndarray]]
930    #: Returns the occupied volume and the total volume for each parameter set.
931    #: See :attr:`ER` for details on the parameters.
932    VR = None               # type: Optional[Callable[[np.ndarray], Tuple[np.ndarray, np.ndarray]]]
933    #: Returns the form volume for python-based models.  Form volume is needed
934    #: for volume normalization in the polydispersity integral.  If no
935    #: parameters are *volume* parameters, then form volume is not needed.
936    #: For C-based models, (with :attr:`sources` defined, or with :attr:`Iq`
937    #: defined using a string containing C code), form_volume must also be
938    #: C code, either defined as a string, or in the sources.
939    form_volume = None      # type: Union[None, str, Callable[[np.ndarray], float]]
940    #: Returns *I(q, a, b, ...)* for parameters *a*, *b*, etc. defined
941    #: by the parameter table.  *Iq* can be defined as a python function, or
942    #: as a C function.  If it is defined in C, then set *Iq* to the body of
943    #: the C function, including the return statement.  This function takes
944    #: values for *q* and each of the parameters as separate *double* values
945    #: (which may be converted to float or long double by sasmodels).  All
946    #: source code files listed in :attr:`sources` will be loaded before the
947    #: *Iq* function is defined.  If *Iq* is not present, then sources should
948    #: define *static double Iq(double q, double a, double b, ...)* which
949    #: will return *I(q, a, b, ...)*.  Multiplicity parameters are sent as
950    #: pointers to doubles.  Constants in floating point expressions should
951    #: include the decimal point. See :mod:`generate` for more details.
952    Iq = None               # type: Union[None, str, Callable[[np.ndarray], np.ndarray]]
953    #: Returns *I(qx, qy, a, b, ...)*.  The interface follows :attr:`Iq`.
954    Iqxy = None             # type: Union[None, str, Callable[[np.ndarray], np.ndarray]]
955    #: Returns *I(qx, qy, a, b, ...)*.  The interface follows :attr:`Iq`.
956    Imagnetic = None        # type: Union[None, str, Callable[[np.ndarray], np.ndarray]]
957    #: Returns a model profile curve *x, y*.  If *profile* is defined, this
958    #: curve will appear in response to the *Show* button in SasView.  Use
959    #: :attr:`profile_axes` to set the axis labels.  Note that *y* values
960    #: will be scaled by 1e6 before plotting.
961    profile = None          # type: Optional[Callable[[np.ndarray], None]]
962    #: Axis labels for the :attr:`profile` plot.  The default is *['x', 'y']*.
963    #: Only the *x* component is used for now.
964    profile_axes = None     # type: Tuple[str, str]
965    #: Returns *sesans(z, a, b, ...)* for models which can directly compute
966    #: the SESANS correlation function.  Note: not currently implemented.
967    sesans = None           # type: Optional[Callable[[np.ndarray], np.ndarray]]
968
969    # line numbers within the python file for bits of C source, if defined
970    # NB: some compilers fail with a "#line 0" directive, so default to 1.
971    _Imagnetic_line = 1
972    _Iqxy_line = 1
973    _Iq_line = 1
974    _form_volume_line = 1
975
976
977    def __init__(self):
978        # type: () -> None
979        pass
980
981    def get_hidden_parameters(self, control):
982        """
983        Returns the set of hidden parameters for the model.  *control* is the
984        value of the control parameter.  Note that multiplicity models have
985        an implicit control parameter, which is the parameter that controls
986        the multiplicity.
987        """
988        if self.hidden is not None:
989            hidden = self.hidden(control)
990        else:
991            controls = [p for p in self.parameters.kernel_parameters
992                        if p.is_control]
993            if len(controls) != 1:
994                raise ValueError("more than one control parameter")
995            hidden = set(p.id+str(k)
996                         for p in self.parameters.kernel_parameters
997                         for k in range(control+1, p.length+1)
998                         if p.length > 1)
999        return hidden
Note: See TracBrowser for help on using the repository browser.