source: sasmodels/sasmodels/modelinfo.py @ 97be877

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 97be877 was 108e70e, checked in by Paul Kienzle <pkienzle@…>, 6 years ago

use Iqac/Iqabc? for the new orientation interface but Iqxy for the old

  • Property mode set to 100644
File size: 44.9 KB
Line 
1"""
2Model Info and Parameter Tables
3===============================
4
5Defines :class:`ModelInfo` and :class:`ParameterTable` and the routines for
6manipulating them.  In particular, :func:`make_model_info` converts a kernel
7module into the model info block as seen by the rest of the sasmodels library.
8"""
9from __future__ import print_function
10
11from copy import copy
12from os.path import abspath, basename, splitext
13import inspect
14
15import numpy as np  # type: ignore
16
17# Optional typing
18# pylint: disable=unused-import
19try:
20    from typing import Tuple, List, Union, Dict, Optional, Any, Callable, Sequence, Set
21    from types import ModuleType
22except ImportError:
23    pass
24else:
25    Limits = Tuple[float, float]
26    #LimitsOrChoice = Union[Limits, Tuple[Sequence[str]]]
27    ParameterDef = Tuple[str, str, float, Limits, str, str]
28    ParameterSetUser = Dict[str, Union[float, List[float]]]
29    ParameterSet = Dict[str, float]
30    TestInput = Union[str, float, List[float], Tuple[float, float], List[Tuple[float, float]]]
31    TestValue = Union[float, List[float]]
32    TestCondition = Tuple[ParameterSetUser, TestInput, TestValue]
33# pylint: enable=unused-import
34
35# If MAX_PD changes, need to change the loop macros in kernel_iq.c
36MAX_PD = 5 #: Maximum number of simultaneously polydisperse parameters
37
38# assumptions about common parameters exist throughout the code, such as:
39# (1) kernel functions Iq, Iqxy, Iqac, Iqabc, form_volume, ... don't see them
40# (2) kernel drivers assume scale is par[0] and background is par[1]
41# (3) mixture models drop the background on components and replace the scale
42#     with a scale that varies from [-inf, inf]
43# (4) product models drop the background and reassign scale
44# and maybe other places.
45# Note that scale and background cannot be coordinated parameters whose value
46# depends on the some polydisperse parameter with the current implementation
47COMMON_PARAMETERS = [
48    ("scale", "", 1, (0.0, np.inf), "", "Source intensity"),
49    ("background", "1/cm", 1e-3, (-np.inf, np.inf), "", "Source background"),
50]
51assert (len(COMMON_PARAMETERS) == 2
52        and COMMON_PARAMETERS[0][0] == "scale"
53        and COMMON_PARAMETERS[1][0] == "background"), "don't change common parameters"
54
55
56def make_parameter_table(pars):
57    # type: (List[ParameterDef]) -> ParameterTable
58    """
59    Construct a parameter table from a list of parameter definitions.
60
61    This is used by the module processor to convert the parameter block into
62    the parameter table seen in the :class:`ModelInfo` for the module.
63    """
64    processed = []
65    for p in pars:
66        if not isinstance(p, (list, tuple)) or len(p) != 6:
67            raise ValueError("Parameter should be [name, units, default, limits, type, desc], but got %r"
68                             %str(p))
69        processed.append(parse_parameter(*p))
70    partable = ParameterTable(processed)
71    return partable
72
73def parse_parameter(name, units='', default=np.NaN,
74                    user_limits=None, ptype='', description=''):
75    # type: (str, str, float, Sequence[Any], str, str) -> Parameter
76    """
77    Parse an individual parameter from the parameter definition block.
78
79    This does type and value checking on the definition, leading
80    to early failure in the model loading process and easier debugging.
81    """
82    # Parameter is a user facing class.  Do robust type checking.
83    if not isstr(name):
84        raise ValueError("expected string for parameter name %r"%name)
85    if not isstr(units):
86        raise ValueError("expected units to be a string for %s"%name)
87
88    # Process limits as [float, float] or [[str, str, ...]]
89    choices = []  # type: List[str]
90    if user_limits is None:
91        limits = (-np.inf, np.inf)
92    elif not isinstance(user_limits, (tuple, list)):
93        raise ValueError("invalid limits for %s"%name)
94    else:
95        # if limits is [[str,...]], then this is a choice list field,
96        # and limits are 1 to length of string list
97        if isinstance(user_limits[0], (tuple, list)):
98            choices = user_limits[0]
99            limits = (0., len(choices)-1.)
100            if not all(isstr(k) for k in choices):
101                raise ValueError("choices must be strings for %s"%name)
102        else:
103            try:
104                low, high = user_limits
105                limits = (float(low), float(high))
106            except Exception:
107                raise ValueError("invalid limits for %s: %r"%(name, user_limits))
108            if low >= high:
109                raise ValueError("require lower limit < upper limit")
110
111    # Process default value as float, making sure it is in range
112    if not isinstance(default, (int, float)):
113        raise ValueError("expected default %r to be a number for %s"
114                         % (default, name))
115    if default < limits[0] or default > limits[1]:
116        raise ValueError("default value %r not in range for %s"
117                         % (default, name))
118
119    # Check for valid parameter type
120    if ptype not in ("volume", "orientation", "sld", "magnetic", ""):
121        raise ValueError("unexpected type %r for %s" % (ptype, name))
122
123    # Check for valid parameter description
124    if not isstr(description):
125        raise ValueError("expected description to be a string")
126
127    # Parameter id for name[n] does not include [n]
128    if "[" in name:
129        if not name.endswith(']'):
130            raise ValueError("Expected name[len] for vector parameter %s"%name)
131        pid, ref = name[:-1].split('[', 1)
132        ref = ref.strip()
133    else:
134        pid, ref = name, None
135
136    # automatically identify sld types
137    if ptype == '' and (pid.startswith('sld') or pid.endswith('sld')):
138        ptype = 'sld'
139
140    # Check if using a vector definition, name[k], as the parameter name
141    if ref:
142        if ref == '':
143            raise ValueError("Need to specify vector length for %s"%name)
144        try:
145            length = int(ref)
146            control = None
147        except ValueError:
148            length = None
149            control = ref
150    else:
151        length = 1
152        control = None
153
154    # Build the parameter
155    parameter = Parameter(name=name, units=units, default=default,
156                          limits=limits, ptype=ptype, description=description)
157
158    # TODO: need better control over whether a parameter is polydisperse
159    parameter.polydisperse = ptype in ('orientation', 'volume')
160    parameter.relative_pd = ptype == 'volume'
161    parameter.choices = choices
162    parameter.length = length
163    parameter.length_control = control
164
165    return parameter
166
167
168def expand_pars(partable, pars):
169    # type: (ParameterTable, ParameterSetUser) ->  ParameterSet
170    """
171    Create demo parameter set from key-value pairs.
172
173    *pars* are the key-value pairs to use for the parameters.  Any
174    parameters not specified in *pars* are set from the *partable* defaults.
175
176    If *pars* references vector fields, such as thickness[n], then support
177    different ways of assigning the demo values, including assigning a
178    specific value (e.g., thickness3=50.0), assigning a new value to all
179    (e.g., thickness=50.0) or assigning values using list notation.
180    """
181    if pars is None:
182        result = partable.defaults
183    else:
184        lookup = dict((p.id, p) for p in partable.kernel_parameters)
185        result = partable.defaults.copy()
186        scalars = dict((name, value) for name, value in pars.items()
187                       if name not in lookup or lookup[name].length == 1)
188        vectors = dict((name, value) for name, value in pars.items()
189                       if name in lookup and lookup[name].length > 1)
190        #print("lookup", lookup)
191        #print("scalars", scalars)
192        #print("vectors", vectors)
193        if vectors:
194            for name, value in vectors.items():
195                if np.isscalar(value):
196                    # support for the form
197                    #    dict(thickness=0, thickness2=50)
198                    for k in range(1, lookup[name].length+1):
199                        key = name+str(k)
200                        if key not in scalars:
201                            scalars[key] = value
202                else:
203                    # supoprt for the form
204                    #    dict(thickness=[20,10,3])
205                    for (k, v) in enumerate(value):
206                        scalars[name+str(k+1)] = v
207        result.update(scalars)
208        #print("expanded", result)
209
210    return result
211
212def prefix_parameter(par, prefix):
213    # type: (Parameter, str) -> Parameter
214    """
215    Return a copy of the parameter with its name prefixed.
216    """
217    new_par = copy(par)
218    new_par.name = prefix + par.name
219    new_par.id = prefix + par.id
220
221def suffix_parameter(par, suffix):
222    # type: (Parameter, str) -> Parameter
223    """
224    Return a copy of the parameter with its name prefixed.
225    """
226    new_par = copy(par)
227    # If name has the form x[n], replace with x_suffix[n]
228    new_par.name = par.id + suffix + par.name[len(par.id):]
229    new_par.id = par.id + suffix
230
231class Parameter(object):
232    """
233    The available kernel parameters are defined as a list, with each parameter
234    defined as a sublist with the following elements:
235
236    *name* is the name that will be displayed to the user.  Names
237    should be lower case, with words separated by underscore.  If
238    acronyms are used, the whole acronym should be upper case. For vector
239    parameters, the name will be followed by *[len]* where *len* is an
240    integer length of the vector, or the name of the parameter which
241    controls the length.  The attribute *id* will be created from name
242    without the length.
243
244    *units* should be one of *degrees* for angles, *Ang* for lengths,
245    *1e-6/Ang^2* for SLDs.
246
247    *default value* will be the initial value for  the model when it
248    is selected, or when an initial value is not otherwise specified.
249
250    *limits = [lb, ub]* are the hard limits on the parameter value, used to
251    limit the polydispersity density function.  In the fit, the parameter limits
252    given to the fit are the limits  on the central value of the parameter.
253    If there is polydispersity, it will evaluate parameter values outside
254    the fit limits, but not outside the hard limits specified in the model.
255    If there are no limits, use +/-inf imported from numpy.
256
257    *type* indicates how the parameter will be used.  "volume" parameters
258    will be used in all functions.  "orientation" parameters are not passed,
259    but will be used to convert from *qx*, *qy* to *qa*, *qb*, *qc* in calls to
260    *Iqxy* and *Imagnetic*.  If *type* is the empty string, the parameter will
261    be used in all of *Iq*, *Iqxy* and *Imagnetic*.  "sld" parameters
262    can automatically be promoted to magnetic parameters, each of which
263    will have a magnitude and a direction, which may be different from
264    other sld parameters. The volume parameters are used for calls
265    to form_volume within the kernel (required for volume normalization)
266    and for calls to ER and VR for effective radius and volume ratio
267    respectively.
268
269    *description* is a short description of the parameter.  This will
270    be displayed in the parameter table and used as a tool tip for the
271    parameter value in the user interface.
272
273    Additional values can be set after the parameter is created:
274
275    * *length* is the length of the field if it is a vector field
276
277    * *length_control* is the parameter which sets the vector length
278
279    * *is_control* is True if the parameter is a control parameter for a vector
280
281    * *polydisperse* is true if the parameter accepts a polydispersity
282
283    * *relative_pd* is true if that polydispersity is a portion of the
284      value (so a 10% length dipsersity would use a polydispersity value
285      of 0.1) rather than absolute dispersisity (such as an angle plus or
286      minus 15 degrees).
287
288    *choices* is the option names for a drop down list of options, as for
289    example, might be used to set the value of a shape parameter.
290
291    These values are set by :func:`make_parameter_table` and
292    :func:`parse_parameter` therein.
293    """
294    def __init__(self, name, units='', default=None, limits=(-np.inf, np.inf),
295                 ptype='', description=''):
296        # type: (str, str, float, Limits, str, str) -> None
297        self.id = name.split('[')[0].strip() # type: str
298        self.name = name                     # type: str
299        self.units = units                   # type: str
300        self.default = default               # type: float
301        self.limits = limits                 # type: Limits
302        self.type = ptype                    # type: str
303        self.description = description       # type: str
304
305        # Length and length_control will be filled in once the complete
306        # parameter table is available.
307        self.length = 1                      # type: int
308        self.length_control = None           # type: Optional[str]
309        self.is_control = False              # type: bool
310
311        # TODO: need better control over whether a parameter is polydisperse
312        self.polydisperse = False            # type: bool
313        self.relative_pd = False             # type: bool
314
315        # choices are also set externally.
316        self.choices = []                    # type: List[str]
317
318    def as_definition(self):
319        # type: () -> str
320        """
321        Declare space for the variable in a parameter structure.
322
323        For example, the parameter thickness with length 3 will
324        return "double thickness[3];", with no spaces before and
325        no new line character afterward.
326        """
327        if self.length == 1:
328            return "double %s;"%self.id
329        else:
330            return "double %s[%d];"%(self.id, self.length)
331
332    def as_function_argument(self):
333        # type: () -> str
334        r"""
335        Declare the variable as a function argument.
336
337        For example, the parameter thickness with length 3 will
338        return "double \*thickness", with no spaces before and
339        no comma afterward.
340        """
341        if self.length == 1:
342            return "double %s"%self.id
343        else:
344            return "double *%s"%self.id
345
346    def as_call_reference(self, prefix=""):
347        # type: (str) -> str
348        """
349        Return *prefix* + parameter name.  For struct references, use "v."
350        as the prefix.
351        """
352        # Note: if the parameter is a struct type, then we will need to use
353        # &prefix+id.  For scalars and vectors we can just use prefix+id.
354        return prefix + self.id
355
356    def __str__(self):
357        # type: () -> str
358        return "<%s>"%self.name
359
360    def __repr__(self):
361        # type: () -> str
362        return "P<%s>"%self.name
363
364
365class ParameterTable(object):
366    """
367    ParameterTable manages the list of available parameters.
368
369    There are a couple of complications which mean that the list of parameters
370    for the kernel differs from the list of parameters that the user sees.
371
372    (1) Common parameters.  Scale and background are implicit to every model,
373    but are not passed to the kernel.
374
375    (2) Vector parameters.  Vector parameters are passed to the kernel as a
376    pointer to an array, e.g., thick[], but they are seen by the user as n
377    separate parameters thick1, thick2, ...
378
379    Therefore, the parameter table is organized by how it is expected to be
380    used. The following information is needed to set up the kernel functions:
381
382    * *kernel_parameters* is the list of parameters in the kernel parameter
383      table, with vector parameter p declared as p[].
384
385    * *iq_parameters* is the list of parameters to the Iq(q, ...) function,
386      with vector parameter p sent as p[].
387
388    * *form_volume_parameters* is the list of parameters to the form_volume(...)
389      function, with vector parameter p sent as p[].
390
391    Problem details, which sets up the polydispersity loops, requires the
392    following:
393
394    * *theta_offset* is the offset of the theta parameter in the kernel parameter
395      table, with vector parameters counted as n individual parameters
396      p1, p2, ..., or offset is -1 if there is no theta parameter.
397
398    * *max_pd* is the maximum number of polydisperse parameters, with vector
399      parameters counted as n individual parameters p1, p2, ...  Note that
400      this number is limited to sasmodels.modelinfo.MAX_PD.
401
402    * *npars* is the total number of parameters to the kernel, with vector
403      parameters counted as n individual parameters p1, p2, ...
404
405    * *call_parameters* is the complete list of parameters to the kernel,
406      including scale and background, with vector parameters recorded as
407      individual parameters p1, p2, ...
408
409    * *active_1d* is the set of names that may be polydisperse for 1d data
410
411    * *active_2d* is the set of names that may be polydisperse for 2d data
412
413    User parameters are the set of parameters visible to the user, including
414    the scale and background parameters that the kernel does not see.  User
415    parameters don't use vector notation, and instead use p1, p2, ...
416    """
417    # scale and background are implicit parameters
418    COMMON = [Parameter(*p) for p in COMMON_PARAMETERS]
419
420    def __init__(self, parameters):
421        # type: (List[Parameter]) -> None
422        self.kernel_parameters = parameters
423        self._check_angles()
424        self._set_vector_lengths()
425
426        self.npars = sum(p.length for p in self.kernel_parameters)
427        self.nmagnetic = sum(p.length for p in self.kernel_parameters
428                             if p.type == 'sld')
429        self.nvalues = 2 + self.npars
430        if self.nmagnetic:
431            self.nvalues += 3 + 3*self.nmagnetic
432
433        self.call_parameters = self._get_call_parameters()
434        self.defaults = self._get_defaults()
435        #self._name_table= dict((p.id, p) for p in parameters)
436
437        # Set the kernel parameters.  Assumes background and scale are the
438        # first two parameters in the parameter list, but these are not sent
439        # to the underlying kernel functions.
440        self.iq_parameters = [p for p in self.kernel_parameters
441                              if p.type not in ('orientation', 'magnetic')]
442        self.orientation_parameters = [p for p in self.kernel_parameters
443                                       if p.type == 'orientation']
444        self.form_volume_parameters = [p for p in self.kernel_parameters
445                                       if p.type == 'volume']
446
447        # Theta offset
448        offset = 0
449        for p in self.kernel_parameters:
450            if p.name == 'theta':
451                self.theta_offset = offset
452                break
453            offset += p.length
454        else:
455            self.theta_offset = -1
456
457        # number of polydisperse parameters
458        num_pd = sum(p.length for p in self.kernel_parameters if p.polydisperse)
459        # Don't use more polydisperse parameters than are available in the model
460        self.max_pd = min(num_pd, MAX_PD)
461
462        # true if has 2D parameters
463        self.has_2d = any(p.type in ('orientation', 'magnetic')
464                          for p in self.kernel_parameters)
465        self.is_asymmetric = any(p.name == 'psi' for p in self.kernel_parameters)
466        self.magnetism_index = [k for k, p in enumerate(self.call_parameters)
467                                if p.id.startswith('M0:')]
468
469        self.pd_1d = set(p.name for p in self.call_parameters
470                         if p.polydisperse and p.type not in ('orientation', 'magnetic'))
471        self.pd_2d = set(p.name for p in self.call_parameters if p.polydisperse)
472
473    def _check_angles(self):
474        theta = phi = psi = -1
475        for k, p in enumerate(self.kernel_parameters):
476            if p.name == 'theta':
477                theta = k
478                if p.type != 'orientation':
479                    raise TypeError("theta must be an orientation parameter")
480            elif p.name == 'phi':
481                phi = k
482                if p.type != 'orientation':
483                    raise TypeError("phi must be an orientation parameter")
484            elif p.name == 'psi':
485                psi = k
486                if p.type != 'orientation':
487                    raise TypeError("psi must be an orientation parameter")
488            elif p.type == 'orientation':
489                raise TypeError("only theta, phi and psi can be orientation parameters")
490        if theta >= 0 and phi >= 0:
491            last_par = len(self.kernel_parameters) - 1
492            if phi != theta+1:
493                raise TypeError("phi must follow theta")
494            if psi >= 0 and psi != phi+1:
495                raise TypeError("psi must follow phi")
496            #if (psi >= 0 and psi != last_par) or (psi < 0 and phi != last_par):
497            #    raise TypeError("orientation parameters must appear at the "
498            #                    "end of the parameter table")
499        elif theta >= 0 or phi >= 0 or psi >= 0:
500            raise TypeError("oriented shapes must have both theta and phi and maybe psi")
501
502    def __getitem__(self, key):
503        # Find the parameter definition
504        for par in self.call_parameters:
505            if par.name == key:
506                return par
507        raise KeyError("unknown parameter %r"%key)
508
509    def __contains__(self, key):
510        for par in self.call_parameters:
511            if par.name == key:
512                return True
513        return False
514
515    def _set_vector_lengths(self):
516        # type: () -> List[str]
517        """
518        Walk the list of kernel parameters, setting the length field of the
519        vector parameters from the upper limit of the reference parameter.
520
521        This needs to be done once the entire parameter table is available
522        since the reference may still be undefined when the parameter is
523        initially created.
524
525        Returns the list of control parameter names.
526
527        Note: This modifies the underlying parameter object.
528        """
529        # Sort out the length of the vector parameters such as thickness[n]
530        for p in self.kernel_parameters:
531            if p.length_control:
532                ref = self._get_ref(p)
533                ref.is_control = True
534                ref.polydisperse = False
535                low, high = ref.limits
536                if int(low) != low or int(high) != high or low < 0 or high > 20:
537                    raise ValueError("expected limits on %s to be within [0, 20]"
538                                     % ref.name)
539                p.length = int(high)
540
541    def _get_ref(self, p):
542        # type: (Parameter) -> Parameter
543        for ref in self.kernel_parameters:
544            if ref.id == p.length_control:
545                return ref
546        raise ValueError("no reference variable %r for %s"
547                         % (p.length_control, p.name))
548
549    def _get_defaults(self):
550        # type: () -> ParameterSet
551        """
552        Get a list of parameter defaults from the parameters.
553
554        Expands vector parameters into parameter id+number.
555        """
556        # Construct default values, including vector defaults
557        defaults = {}
558        for p in self.call_parameters:
559            if p.length == 1:
560                defaults[p.id] = p.default
561            else:
562                for k in range(1, p.length+1):
563                    defaults["%s%d"%(p.id, k)] = p.default
564        return defaults
565
566    def _get_call_parameters(self):
567        # type: () -> List[Parameter]
568        full_list = self.COMMON[:]
569        for p in self.kernel_parameters:
570            if p.length == 1:
571                full_list.append(p)
572            else:
573                for k in range(1, p.length+1):
574                    pk = Parameter(p.id+str(k), p.units, p.default,
575                                   p.limits, p.type, p.description)
576                    pk.polydisperse = p.polydisperse
577                    pk.relative_pd = p.relative_pd
578                    pk.choices = p.choices
579                    full_list.append(pk)
580
581        # Add the magnetic parameters to the end of the call parameter list.
582        if self.nmagnetic > 0:
583            full_list.extend([
584                Parameter('up:frac_i', '', 0., [0., 1.],
585                          'magnetic', 'fraction of spin up incident'),
586                Parameter('up:frac_f', '', 0., [0., 1.],
587                          'magnetic', 'fraction of spin up final'),
588                Parameter('up:angle', 'degress', 0., [0., 360.],
589                          'magnetic', 'spin up angle'),
590            ])
591            slds = [p for p in full_list if p.type == 'sld']
592            for p in slds:
593                full_list.extend([
594                    Parameter('M0:'+p.id, '1e-6/Ang^2', 0., [-np.inf, np.inf],
595                              'magnetic', 'magnetic amplitude for '+p.description),
596                    Parameter('mtheta:'+p.id, 'degrees', 0., [-90., 90.],
597                              'magnetic', 'magnetic latitude for '+p.description),
598                    Parameter('mphi:'+p.id, 'degrees', 0., [-180., 180.],
599                              'magnetic', 'magnetic longitude for '+p.description),
600                ])
601        #print("call parameters", full_list)
602        return full_list
603
604    def user_parameters(self, pars, is2d=True):
605        # type: (Dict[str, float], bool) -> List[Parameter]
606        """
607        Return the list of parameters for the given data type.
608
609        Vector parameters are expanded in place.  If multiple parameters
610        share the same vector length, then the parameters will be interleaved
611        in the result.  The control parameters come first.  For example,
612        if the parameter table is ordered as::
613
614            sld_core
615            sld_shell[num_shells]
616            sld_solvent
617            thickness[num_shells]
618            num_shells
619
620        and *pars[num_shells]=2* then the returned list will be::
621
622            num_shells
623            scale
624            background
625            sld_core
626            sld_shell1
627            thickness1
628            sld_shell2
629            thickness2
630            sld_solvent
631
632        Note that shell/thickness pairs are grouped together in the result
633        even though they were not grouped in the incoming table.  The control
634        parameter is always returned first since the GUI will want to set it
635        early, and rerender the table when it is changed.
636
637        Parameters marked as sld will automatically have a set of associated
638        magnetic parameters (m0:p, mtheta:p, mphi:p), as well as polarization
639        information (up:theta, up:frac_i, up:frac_f).
640        """
641        # control parameters go first
642        control = [p for p in self.kernel_parameters if p.is_control]
643
644        # Gather entries such as name[n] into groups of the same n
645        dependent = {} # type: Dict[str, List[Parameter]]
646        dependent.update((p.id, []) for p in control)
647        for p in self.kernel_parameters:
648            if p.length_control is not None:
649                dependent[p.length_control].append(p)
650
651        # Gather entries such as name[4] into groups of the same length
652        fixed_length = {}  # type: Dict[int, List[Parameter]]
653        for p in self.kernel_parameters:
654            if p.length > 1 and p.length_control is None:
655                fixed_length.setdefault(p.length, []).append(p)
656
657        # Using the call_parameters table, we already have expanded forms
658        # for each of the vector parameters; put them in a lookup table
659        # Note: p.id and p.name are currently identical for the call parameters
660        expanded_pars = dict((p.id, p) for p in self.call_parameters)
661
662        def append_group(name):
663            """add the named parameter, and related magnetic parameters if any"""
664            result.append(expanded_pars[name])
665            if is2d:
666                for tag in 'M0:', 'mtheta:', 'mphi:':
667                    if tag+name in expanded_pars:
668                        result.append(expanded_pars[tag+name])
669
670        # Gather the user parameters in order
671        result = control + self.COMMON
672        for p in self.kernel_parameters:
673            if not is2d and p.type in ('orientation', 'magnetic'):
674                pass
675            elif p.is_control:
676                pass # already added
677            elif p.length_control is not None:
678                table = dependent.get(p.length_control, [])
679                if table:
680                    # look up length from incoming parameters
681                    table_length = int(pars.get(p.length_control, p.length))
682                    del dependent[p.length_control] # first entry seen
683                    for k in range(1, table_length+1):
684                        for entry in table:
685                            append_group(entry.id+str(k))
686                else:
687                    pass # already processed all entries
688            elif p.length > 1:
689                table = fixed_length.get(p.length, [])
690                if table:
691                    table_length = p.length
692                    del fixed_length[p.length]
693                    for k in range(1, table_length+1):
694                        for entry in table:
695                            append_group(entry.id+str(k))
696                else:
697                    pass # already processed all entries
698            else:
699                append_group(p.id)
700
701        if is2d and 'up:angle' in expanded_pars:
702            result.extend([
703                expanded_pars['up:frac_i'],
704                expanded_pars['up:frac_f'],
705                expanded_pars['up:angle'],
706            ])
707
708        return result
709
710def isstr(x):
711    # type: (Any) -> bool
712    """
713    Return True if the object is a string.
714    """
715    # TODO: 2-3 compatible tests for str, including unicode strings
716    return isinstance(x, str)
717
718
719#: Set of variables defined in the model that might contain C code
720C_SYMBOLS = ['Imagnetic', 'Iq', 'Iqxy', 'Iqac', 'Iqabc', 'form_volume', 'c_code']
721
722def _find_source_lines(model_info, kernel_module):
723    # type: (ModelInfo, ModuleType) -> None
724    """
725    Identify the location of the C source inside the model definition file.
726
727    This code runs through the source of the kernel module looking for lines
728    that contain C code (because it is a c function definition).  Clearly
729    there are all sorts of reasons why this might not work (e.g., code
730    commented out in a triple-quoted line block, code built using string
731    concatenation, code defined in the branch of an 'if' block, code imported
732    from another file), but it should work properly in the 95% case, and for
733    the remainder, getting the incorrect line number will merely be
734    inconvenient.
735    """
736    # Only need line numbers if we are creating a C module and the C symbols
737    # are defined.
738    if (callable(model_info.Iq)
739            or not any(hasattr(model_info, s) for s in C_SYMBOLS)):
740        return
741
742    # load the module source if we can
743    try:
744        source = inspect.getsource(kernel_module)
745    except IOError:
746        return
747
748    # look for symbol at the start of the line
749    for lineno, line in enumerate(source.split('\n')):
750        for name in C_SYMBOLS:
751            if line.startswith(name):
752                # Add 1 since some compilers complain about "#line 0"
753                model_info.lineno[name] = lineno + 1
754                break
755
756def make_model_info(kernel_module):
757    # type: (module) -> ModelInfo
758    """
759    Extract the model definition from the loaded kernel module.
760
761    Fill in default values for parts of the module that are not provided.
762
763    Note: vectorized Iq and Iqac/Iqabc functions will be created for python
764    models when the model is first called, not when the model is loaded.
765    """
766    if hasattr(kernel_module, "model_info"):
767        # Custom sum/multi models
768        return kernel_module.model_info
769    info = ModelInfo()
770    #print("make parameter table", kernel_module.parameters)
771    parameters = make_parameter_table(getattr(kernel_module, 'parameters', []))
772    demo = expand_pars(parameters, getattr(kernel_module, 'demo', None))
773    filename = abspath(kernel_module.__file__).replace('.pyc', '.py')
774    kernel_id = splitext(basename(filename))[0]
775    name = getattr(kernel_module, 'name', None)
776    if name is None:
777        name = " ".join(w.capitalize() for w in kernel_id.split('_'))
778
779    info.id = kernel_id  # string used to load the kernel
780    info.filename = filename
781    info.name = name
782    info.title = getattr(kernel_module, 'title', name+" model")
783    info.description = getattr(kernel_module, 'description', 'no description')
784    info.parameters = parameters
785    info.demo = demo
786    info.composition = None
787    info.docs = kernel_module.__doc__
788    info.category = getattr(kernel_module, 'category', None)
789    info.structure_factor = getattr(kernel_module, 'structure_factor', False)
790    info.profile_axes = getattr(kernel_module, 'profile_axes', ['x', 'y'])
791    info.source = getattr(kernel_module, 'source', [])
792    info.c_code = getattr(kernel_module, 'c_code', None)
793    # TODO: check the structure of the tests
794    info.tests = getattr(kernel_module, 'tests', [])
795    info.ER = getattr(kernel_module, 'ER', None) # type: ignore
796    info.VR = getattr(kernel_module, 'VR', None) # type: ignore
797    info.form_volume = getattr(kernel_module, 'form_volume', None) # type: ignore
798    info.Iq = getattr(kernel_module, 'Iq', None) # type: ignore
799    info.Iqxy = getattr(kernel_module, 'Iqxy', None) # type: ignore
800    info.Iqac = getattr(kernel_module, 'Iqac', None) # type: ignore
801    info.Iqabc = getattr(kernel_module, 'Iqabc', None) # type: ignore
802    info.Imagnetic = getattr(kernel_module, 'Imagnetic', None) # type: ignore
803    info.profile = getattr(kernel_module, 'profile', None) # type: ignore
804    info.sesans = getattr(kernel_module, 'sesans', None) # type: ignore
805    # Default single and opencl to True for C models.  Python models have callable Iq.
806    info.opencl = getattr(kernel_module, 'opencl', not callable(info.Iq))
807    info.single = getattr(kernel_module, 'single', not callable(info.Iq))
808    info.random = getattr(kernel_module, 'random', None)
809
810    # multiplicity info
811    control_pars = [p.id for p in parameters.kernel_parameters if p.is_control]
812    default_control = control_pars[0] if control_pars else None
813    info.control = getattr(kernel_module, 'control', default_control)
814    info.hidden = getattr(kernel_module, 'hidden', None) # type: ignore
815
816    if callable(info.Iq) and parameters.has_2d:
817        raise ValueError("oriented python models not supported")
818
819    info.lineno = {}
820    _find_source_lines(info, kernel_module)
821
822    return info
823
824class ModelInfo(object):
825    """
826    Interpret the model definition file, categorizing the parameters.
827
828    The module can be loaded with a normal python import statement if you
829    know which module you need, or with __import__('sasmodels.model.'+name)
830    if the name is in a string.
831
832    The structure should be mostly static, other than the delayed definition
833    of *Iq*, *Iqac* and *Iqabc* if they need to be defined.
834    """
835    #: Full path to the file defining the kernel, if any.
836    filename = None         # type: Optional[str]
837    #: Id of the kernel used to load it from the filesystem.
838    id = None               # type: str
839    #: Display name of the model, which defaults to the model id but with
840    #: capitalization of the parts so for example core_shell defaults to
841    #: "Core Shell".
842    name = None             # type: str
843    #: Short description of the model.
844    title = None            # type: str
845    #: Long description of the model.
846    description = None      # type: str
847    #: Model parameter table. Parameters are defined using a list of parameter
848    #: definitions, each of which is contains parameter name, units,
849    #: default value, limits, type and description.  See :class:`Parameter`
850    #: for details on the individual parameters.  The parameters are gathered
851    #: into a :class:`ParameterTable`, which provides various views into the
852    #: parameter list.
853    parameters = None       # type: ParameterTable
854    #: Demo parameters as a *parameter:value* map used as the default values
855    #: for :mod:`compare`.  Any parameters not set in *demo* will use the
856    #: defaults from the parameter table.  That means no polydispersity, and
857    #: in the case of multiplicity models, a minimal model with no interesting
858    #: scattering.
859    demo = None             # type: Dict[str, float]
860    #: Composition is None if this is an independent model, or it is a
861    #: tuple with comoposition type ('product' or 'misture') and a list of
862    #: :class:`ModelInfo` blocks for the composed objects.  This allows us
863    #: to rebuild a complete mixture or product model from the info block.
864    #: *composition* is not given in the model definition file, but instead
865    #: arises when the model is constructed using names such as
866    #: *sphere*hardsphere* or *cylinder+sphere*.
867    composition = None      # type: Optional[Tuple[str, List[ModelInfo]]]
868    #: Name of the control parameter for a variant model such as :ref:`rpa`.
869    #: The *control* parameter should appear in the parameter table, with
870    #: limits defined as *[CASES]*, for case names such as
871    #: *CASES = ["diblock copolymer", "triblock copolymer", ...]*.
872    #: This should give *limits=[[case1, case2, ...]]*, but the
873    #: model loader translates this to *limits=[0, len(CASES)-1]*, and adds
874    #: *choices=CASES* to the :class:`Parameter` definition. Note that
875    #: models can use a list of cases as a parameter without it being a
876    #: control parameter.  Either way, the parameter is sent to the model
877    #: evaluator as *float(choice_num)*, where choices are numbered from 0.
878    #: See also :attr:`hidden`.
879    control = None          # type: str
880    #: Different variants require different parameters.  In order to show
881    #: just the parameters needed for the variant selected by :attr:`control`,
882    #: you should provide a function *hidden(control) -> set(['a', 'b', ...])*
883    #: indicating which parameters need to be hidden.  For multiplicity
884    #: models, you need to use the complete name of the parameter, including
885    #: its number.  So for example, if variant "a" uses only *sld1* and *sld2*,
886    #: then *sld3*, *sld4* and *sld5* of multiplicity parameter *sld[5]*
887    #: should be in the hidden set.
888    hidden = None           # type: Optional[Callable[[int], Set[str]]]
889    #: Doc string from the top of the model file.  This should be formatted
890    #: using ReStructuredText format, with latex markup in ".. math"
891    #: environments, or in dollar signs.  This will be automatically
892    #: extracted to a .rst file by :func:`generate.make_docs`, then
893    #: converted to HTML or PDF by Sphinx.
894    docs = None             # type: str
895    #: Location of the model description in the documentation.  This takes the
896    #: form of "section" or "section:subsection".  So for example,
897    #: :ref:`porod` uses *category="shape-independent"* so it is in the
898    #: :ref:`shape-independent` section whereas
899    #: :ref:`capped-cylinder` uses: *category="shape:cylinder"*, which puts
900    #: it in the :ref:`shape-cylinder` section.
901    category = None         # type: Optional[str]
902    #: True if the model can be computed accurately with single precision.
903    #: This is True by default, but models such as :ref:`bcc-paracrystal` set
904    #: it to False because they require double precision calculations.
905    single = None           # type: bool
906    #: True if the model can be run as an opencl model.  If for some reason
907    #: the model cannot be run in opencl (e.g., because the model passes
908    #: functions by reference), then set this to false.
909    opencl = None           # type: bool
910    #: True if the model is a structure factor used to model the interaction
911    #: between form factor models.  This will default to False if it is not
912    #: provided in the file.
913    structure_factor = None # type: bool
914    #: List of C source files used to define the model.  The source files
915    #: should define the *Iq* function, and possibly *Iqac* or *Iqabc* if the
916    #: model defines orientation parameters. Files containing the most basic
917    #: functions must appear first in the list, followed by the files that
918    #: use those functions.  Form factors are indicated by providing
919    #: an :attr:`ER` function.
920    source = None           # type: List[str]
921    #: The set of tests that must pass.  The format of the tests is described
922    #: in :mod:`model_test`.
923    tests = None            # type: List[TestCondition]
924    #: Returns the effective radius of the model given its volume parameters.
925    #: The presence of *ER* indicates that the model is a form factor model
926    #: that may be used together with a structure factor to form an implicit
927    #: multiplication model.
928    #:
929    #: The parameters to the *ER* function must be marked with type *volume*.
930    #: in the parameter table.  They will appear in the same order as they
931    #: do in the table.  The values passed to *ER* will be vectors, with one
932    #: value for each polydispersity condition.  For example, if the model
933    #: is polydisperse over both length and radius, then both length and
934    #: radius will have the same number of values in the vector, with one
935    #: value for each *length X radius*.  If only *radius* is polydisperse,
936    #: then the value for *length* will be repeated once for each value of
937    #: *radius*.  The *ER* function should return one effective radius for
938    #: each parameter set.  Multiplicity parameters will be received as
939    #: arrays, with one row per polydispersity condition.
940    ER = None               # type: Optional[Callable[[np.ndarray], np.ndarray]]
941    #: Returns the occupied volume and the total volume for each parameter set.
942    #: See :attr:`ER` for details on the parameters.
943    VR = None               # type: Optional[Callable[[np.ndarray], Tuple[np.ndarray, np.ndarray]]]
944    #: Arbitrary C code containing supporting functions, etc., to be inserted
945    #: after everything in source.  This can include Iq and Iqxy functions with
946    #: the full function signature, including all parameters.
947    c_code = None
948    #: Returns the form volume for python-based models.  Form volume is needed
949    #: for volume normalization in the polydispersity integral.  If no
950    #: parameters are *volume* parameters, then form volume is not needed.
951    #: For C-based models, (with :attr:`sources` defined, or with :attr:`Iq`
952    #: defined using a string containing C code), form_volume must also be
953    #: C code, either defined as a string, or in the sources.
954    form_volume = None      # type: Union[None, str, Callable[[np.ndarray], float]]
955    #: Returns *I(q, a, b, ...)* for parameters *a*, *b*, etc. defined
956    #: by the parameter table.  *Iq* can be defined as a python function, or
957    #: as a C function.  If it is defined in C, then set *Iq* to the body of
958    #: the C function, including the return statement.  This function takes
959    #: values for *q* and each of the parameters as separate *double* values
960    #: (which may be converted to float or long double by sasmodels).  All
961    #: source code files listed in :attr:`sources` will be loaded before the
962    #: *Iq* function is defined.  If *Iq* is not present, then sources should
963    #: define *static double Iq(double q, double a, double b, ...)* which
964    #: will return *I(q, a, b, ...)*.  Multiplicity parameters are sent as
965    #: pointers to doubles.  Constants in floating point expressions should
966    #: include the decimal point. See :mod:`generate` for more details.
967    Iq = None               # type: Union[None, str, Callable[[np.ndarray], np.ndarray]]
968    #: Returns *I(qab, qc, a, b, ...)*.  The interface follows :attr:`Iq`.
969    Iqac = None             # type: Union[None, str, Callable[[np.ndarray], np.ndarray]]
970    #: Returns *I(qa, qb, qc, a, b, ...)*.  The interface follows :attr:`Iq`.
971    Iqabc = None            # type: Union[None, str, Callable[[np.ndarray], np.ndarray]]
972    #: Returns *I(qx, qy, a, b, ...)*.  The interface follows :attr:`Iq`.
973    Imagnetic = None        # type: Union[None, str, Callable[[np.ndarray], np.ndarray]]
974    #: Returns a model profile curve *x, y*.  If *profile* is defined, this
975    #: curve will appear in response to the *Show* button in SasView.  Use
976    #: :attr:`profile_axes` to set the axis labels.  Note that *y* values
977    #: will be scaled by 1e6 before plotting.
978    profile = None          # type: Optional[Callable[[np.ndarray], None]]
979    #: Axis labels for the :attr:`profile` plot.  The default is *['x', 'y']*.
980    #: Only the *x* component is used for now.
981    profile_axes = None     # type: Tuple[str, str]
982    #: Returns *sesans(z, a, b, ...)* for models which can directly compute
983    #: the SESANS correlation function.  Note: not currently implemented.
984    sesans = None           # type: Optional[Callable[[np.ndarray], np.ndarray]]
985    #: Returns a random parameter set for the model
986    random = None           # type: Optional[Callable[[], Dict[str, float]]]
987    #: Line numbers for symbols defining C code
988    lineno = None           # type: Dict[str, int]
989
990    def __init__(self):
991        # type: () -> None
992        pass
993
994    def get_hidden_parameters(self, control):
995        """
996        Returns the set of hidden parameters for the model.  *control* is the
997        value of the control parameter.  Note that multiplicity models have
998        an implicit control parameter, which is the parameter that controls
999        the multiplicity.
1000        """
1001        if self.hidden is not None:
1002            hidden = self.hidden(control)
1003        else:
1004            controls = [p for p in self.parameters.kernel_parameters
1005                        if p.is_control]
1006            if len(controls) != 1:
1007                raise ValueError("more than one control parameter")
1008            hidden = set(p.id+str(k)
1009                         for p in self.parameters.kernel_parameters
1010                         for k in range(control+1, p.length+1)
1011                         if p.length > 1)
1012        return hidden
Note: See TracBrowser for help on using the repository browser.