source: sasmodels/sasmodels/kernelpy.py @ 6e7ba14

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 6e7ba14 was 6e7ba14, checked in by Paul Kienzle <pkienzle@…>, 6 years ago

allow for different forms of effective_radius

  • Property mode set to 100644
File size: 12.0 KB
Line 
1"""
2Python driver for python kernels
3
4Calls the kernel with a vector of $q$ values for a single parameter set.
5Polydispersity is supported by looping over different parameter sets and
6summing the results.  The interface to :class:`PyModel` matches those for
7:class:`kernelcl.GpuModel` and :class:`kerneldll.DllModel`.
8"""
9from __future__ import division, print_function
10
11import logging
12
13import numpy as np  # type: ignore
14from numpy import pi
15try:
16    from numpy import cbrt
17except ImportError:
18    def cbrt(x): return x ** (1.0/3.0)
19
20from .generate import F64
21from .kernel import KernelModel, Kernel
22
23# pylint: disable=unused-import
24try:
25    from typing import Union, Callable
26except ImportError:
27    pass
28else:
29    from . import details
30    DType = Union[None, str, np.dtype]
31# pylint: enable=unused-import
32
33logger = logging.getLogger(__name__)
34
35class PyModel(KernelModel):
36    """
37    Wrapper for pure python models.
38    """
39    def __init__(self, model_info):
40        # Make sure Iq is available and vectorized
41        _create_default_functions(model_info)
42        self.info = model_info
43        self.dtype = np.dtype('d')
44        logger.info("load python model " + self.info.name)
45
46    def make_kernel(self, q_vectors):
47        q_input = PyInput(q_vectors, dtype=F64)
48        return PyKernel(self.info, q_input)
49
50    def release(self):
51        """
52        Free resources associated with the model.
53        """
54        pass
55
56class PyInput(object):
57    """
58    Make q data available to the gpu.
59
60    *q_vectors* is a list of q vectors, which will be *[q]* for 1-D data,
61    and *[qx, qy]* for 2-D data.  Internally, the vectors will be reallocated
62    to get the best performance on OpenCL, which may involve shifting and
63    stretching the array to better match the memory architecture.  Additional
64    points will be evaluated with *q=1e-3*.
65
66    *dtype* is the data type for the q vectors. The data type should be
67    set to match that of the kernel, which is an attribute of
68    :class:`GpuProgram`.  Note that not all kernels support double
69    precision, so even if the program was created for double precision,
70    the *GpuProgram.dtype* may be single precision.
71
72    Call :meth:`release` when complete.  Even if not called directly, the
73    buffer will be released when the data object is freed.
74    """
75    def __init__(self, q_vectors, dtype):
76        self.nq = q_vectors[0].size
77        self.dtype = dtype
78        self.is_2d = (len(q_vectors) == 2)
79        if self.is_2d:
80            self.q = np.empty((self.nq, 2), dtype=dtype)
81            self.q[:, 0] = q_vectors[0]
82            self.q[:, 1] = q_vectors[1]
83        else:
84            self.q = np.empty(self.nq, dtype=dtype)
85            self.q[:self.nq] = q_vectors[0]
86
87    def release(self):
88        """
89        Free resources associated with the model inputs.
90        """
91        self.q = None
92
93class PyKernel(Kernel):
94    """
95    Callable SAS kernel.
96
97    *kernel* is the kernel object to call.
98
99    *model_info* is the module information
100
101    *q_input* is the DllInput q vectors at which the kernel should be
102    evaluated.
103
104    The resulting call method takes the *pars*, a list of values for
105    the fixed parameters to the kernel, and *pd_pars*, a list of (value,weight)
106    vectors for the polydisperse parameters.  *cutoff* determines the
107    integration limits: any points with combined weight less than *cutoff*
108    will not be calculated.
109
110    Call :meth:`release` when done with the kernel instance.
111    """
112    def __init__(self, model_info, q_input):
113        # type: (callable, ModelInfo, List[np.ndarray]) -> None
114        self.dtype = np.dtype('d')
115        self.info = model_info
116        self.q_input = q_input
117        self.res = np.empty(q_input.nq, q_input.dtype)
118        self.dim = '2d' if q_input.is_2d else '1d'
119
120        partable = model_info.parameters
121        #kernel_parameters = (partable.iqxy_parameters if q_input.is_2d
122        #                     else partable.iq_parameters)
123        kernel_parameters = partable.iq_parameters
124        volume_parameters = partable.form_volume_parameters
125
126        # Create an array to hold the parameter values.  There will be a
127        # single array whose values are updated as the calculator goes
128        # through the loop.  Arguments to the kernel and volume functions
129        # will use views into this vector, relying on the fact that a
130        # an array of no dimensions acts like a scalar.
131        parameter_vector = np.empty(len(partable.call_parameters)-2, 'd')
132
133        # Create views into the array to hold the arguments
134        offset = 0
135        kernel_args, volume_args = [], []
136        for p in partable.kernel_parameters:
137            if p.length == 1:
138                # Scalar values are length 1 vectors with no dimensions.
139                v = parameter_vector[offset:offset+1].reshape(())
140            else:
141                # Vector values are simple views.
142                v = parameter_vector[offset:offset+p.length]
143            offset += p.length
144            if p in kernel_parameters:
145                kernel_args.append(v)
146            if p in volume_parameters:
147                volume_args.append(v)
148
149        # Hold on to the parameter vector so we can use it to call kernel later.
150        # This may also be required to preserve the views into the vector.
151        self._parameter_vector = parameter_vector
152
153        # Generate a closure which calls the kernel with the views into the
154        # parameter array.
155        if q_input.is_2d:
156            form = model_info.Iqxy
157            qx, qy = q_input.q[:, 0], q_input.q[:, 1]
158            self._form = lambda: form(qx, qy, *kernel_args)
159        else:
160            form = model_info.Iq
161            q = q_input.q
162            self._form = lambda: form(q, *kernel_args)
163
164        # Generate a closure which calls the form_volume if it exists.
165        self._volume_args = volume_args
166        volume = model_info.form_volume
167        radius = model_info.effective_radius
168        self._volume = ((lambda: volume(*volume_args)) if volume
169                        else (lambda: 1.0))
170        self._radius = ((lambda mode: radius(mode, *volume_args)) if radius
171                        else (lambda mode: cbrt(0.75/pi*volume(*volume_args))) if volume
172                        else (lambda mode: 1.0))
173
174
175
176    def _call_kernel(self, call_details, values, cutoff, magnetic, effective_radius_type):
177        # type: (CallDetails, np.ndarray, np.ndarray, float, bool) -> np.ndarray
178        if magnetic:
179            raise NotImplementedError("Magnetism not implemented for pure python models")
180        #print("Calling python kernel")
181        #call_details.show(values)
182        radius = ((lambda: 0.0) if effective_radius_type == 0
183                  else (lambda: self._radius(effective_radius_type)))
184        res = _loops(self._parameter_vector, self._form, self._volume, radius,
185                     self.q_input.nq, call_details, values, cutoff)
186        return res
187
188    def release(self):
189        # type: () -> None
190        """
191        Free resources associated with the kernel.
192        """
193        self.q_input.release()
194        self.q_input = None
195
196def _loops(parameters,    # type: np.ndarray
197           form,          # type: Callable[[], np.ndarray]
198           form_volume,   # type: Callable[[], float]
199           form_radius,   # type: Callable[[], float]
200           nq,            # type: int
201           call_details,  # type: details.CallDetails
202           values,        # type: np.ndarray
203           cutoff,        # type: float
204          ):
205    # type: (...) -> None
206    ################################################################
207    #                                                              #
208    #   !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!   #
209    #   !!                                                    !!   #
210    #   !!  KEEP THIS CODE CONSISTENT WITH KERNEL_TEMPLATE.C  !!   #
211    #   !!                                                    !!   #
212    #   !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!   #
213    #                                                              #
214    ################################################################
215    n_pars = len(parameters)
216    parameters[:] = values[2:n_pars+2]
217    if call_details.num_active == 0:
218        pd_norm = float(form_volume())
219        scale = values[0]/(pd_norm if pd_norm != 0.0 else 1.0)
220        background = values[1]
221        return scale*form() + background
222
223    pd_value = values[2+n_pars:2+n_pars + call_details.num_weights]
224    pd_weight = values[2+n_pars + call_details.num_weights:]
225
226    weight_norm = 0.0
227    weighted_volume = 0.0
228    weighted_radius = 0.0
229    partial_weight = np.NaN
230    weight = np.NaN
231
232    p0_par = call_details.pd_par[0]
233    p0_length = call_details.pd_length[0]
234    p0_index = p0_length
235    p0_offset = call_details.pd_offset[0]
236
237    pd_par = call_details.pd_par[:call_details.num_active]
238    pd_offset = call_details.pd_offset[:call_details.num_active]
239    pd_stride = call_details.pd_stride[:call_details.num_active]
240    pd_length = call_details.pd_length[:call_details.num_active]
241
242    total = np.zeros(nq, 'd')
243    for loop_index in range(call_details.num_eval):
244        # update polydispersity parameter values
245        if p0_index == p0_length:
246            pd_index = (loop_index//pd_stride)%pd_length
247            parameters[pd_par] = pd_value[pd_offset+pd_index]
248            partial_weight = np.prod(pd_weight[pd_offset+pd_index][1:])
249            p0_index = loop_index%p0_length
250
251        weight = partial_weight * pd_weight[p0_offset + p0_index]
252        parameters[p0_par] = pd_value[p0_offset + p0_index]
253        p0_index += 1
254        if weight > cutoff:
255            # Call the scattering function
256            # Assume that NaNs are only generated if the parameters are bad;
257            # exclude all q for that NaN.  Even better would be to have an
258            # INVALID expression like the C models, but that is too expensive.
259            Iq = np.asarray(form(), 'd')
260            if np.isnan(Iq).any():
261                continue
262
263            # update value and norm
264            total += weight * Iq
265            weight_norm += weight
266            weighted_volume += weight * form_volume()
267            weighted_radius += weight * form_radius()
268
269    result = np.hstack((total, weight_norm, weighted_volume, weighted_radius))
270    return result
271
272
273def _create_default_functions(model_info):
274    """
275    Autogenerate missing functions, such as Iqxy from Iq.
276
277    This only works for Iqxy when Iq is written in python. :func:`make_source`
278    performs a similar role for Iq written in C.  This also vectorizes
279    any functions that are not already marked as vectorized.
280    """
281    # Note: must call create_vector_Iq before create_vector_Iqxy
282    _create_vector_Iq(model_info)
283    _create_vector_Iqxy(model_info)
284
285
286def _create_vector_Iq(model_info):
287    """
288    Define Iq as a vector function if it exists.
289    """
290    Iq = model_info.Iq
291    if callable(Iq) and not getattr(Iq, 'vectorized', False):
292        #print("vectorizing Iq")
293        def vector_Iq(q, *args):
294            """
295            Vectorized 1D kernel.
296            """
297            return np.array([Iq(qi, *args) for qi in q])
298        vector_Iq.vectorized = True
299        model_info.Iq = vector_Iq
300
301
302def _create_vector_Iqxy(model_info):
303    """
304    Define Iqxy as a vector function if it exists, or default it from Iq().
305    """
306    Iqxy = getattr(model_info, 'Iqxy', None)
307    if callable(Iqxy):
308        if not getattr(Iqxy, 'vectorized', False):
309            #print("vectorizing Iqxy")
310            def vector_Iqxy(qx, qy, *args):
311                """
312                Vectorized 2D kernel.
313                """
314                return np.array([Iqxy(qxi, qyi, *args) for qxi, qyi in zip(qx, qy)])
315            vector_Iqxy.vectorized = True
316            model_info.Iqxy = vector_Iqxy
317    else:
318        #print("defaulting Iqxy")
319        # Iq is vectorized because create_vector_Iq was already called.
320        Iq = model_info.Iq
321        def default_Iqxy(qx, qy, *args):
322            """
323            Default 2D kernel.
324            """
325            return Iq(np.sqrt(qx**2 + qy**2), *args)
326        default_Iqxy.vectorized = True
327        model_info.Iqxy = default_Iqxy
Note: See TracBrowser for help on using the repository browser.