1 | import numpy as np |
---|
2 | from numpy import pi, cos |
---|
3 | |
---|
4 | from .generate import F64 |
---|
5 | |
---|
6 | class PyModel(object): |
---|
7 | def __init__(self, info): |
---|
8 | self.info = info |
---|
9 | |
---|
10 | def __call__(self, q_input): |
---|
11 | kernel = self.info['Iqxy'] if q_input.is_2D else self.info['Iq'] |
---|
12 | return PyKernel(kernel, self.info, q_input) |
---|
13 | |
---|
14 | # pylint: disable=no-self-use |
---|
15 | def make_input(self, q_vectors): |
---|
16 | return PyInput(q_vectors, dtype=F64) |
---|
17 | |
---|
18 | def release(self): |
---|
19 | pass |
---|
20 | |
---|
21 | class PyInput(object): |
---|
22 | """ |
---|
23 | Make q data available to the gpu. |
---|
24 | |
---|
25 | *q_vectors* is a list of q vectors, which will be *[q]* for 1-D data, |
---|
26 | and *[qx, qy]* for 2-D data. Internally, the vectors will be reallocated |
---|
27 | to get the best performance on OpenCL, which may involve shifting and |
---|
28 | stretching the array to better match the memory architecture. Additional |
---|
29 | points will be evaluated with *q=1e-3*. |
---|
30 | |
---|
31 | *dtype* is the data type for the q vectors. The data type should be |
---|
32 | set to match that of the kernel, which is an attribute of |
---|
33 | :class:`GpuProgram`. Note that not all kernels support double |
---|
34 | precision, so even if the program was created for double precision, |
---|
35 | the *GpuProgram.dtype* may be single precision. |
---|
36 | |
---|
37 | Call :meth:`release` when complete. Even if not called directly, the |
---|
38 | buffer will be released when the data object is freed. |
---|
39 | """ |
---|
40 | def __init__(self, q_vectors, dtype): |
---|
41 | self.nq = q_vectors[0].size |
---|
42 | self.dtype = dtype |
---|
43 | self.is_2D = (len(q_vectors) == 2) |
---|
44 | self.q_vectors = [np.ascontiguousarray(q, self.dtype) for q in q_vectors] |
---|
45 | self.q_pointers = [q.ctypes.data for q in self.q_vectors] |
---|
46 | |
---|
47 | def release(self): |
---|
48 | self.q_vectors = [] |
---|
49 | |
---|
50 | class PyKernel(object): |
---|
51 | """ |
---|
52 | Callable SAS kernel. |
---|
53 | |
---|
54 | *kernel* is the DllKernel object to call. |
---|
55 | |
---|
56 | *info* is the module information |
---|
57 | |
---|
58 | *q_input* is the DllInput q vectors at which the kernel should be |
---|
59 | evaluated. |
---|
60 | |
---|
61 | The resulting call method takes the *pars*, a list of values for |
---|
62 | the fixed parameters to the kernel, and *pd_pars*, a list of (value,weight) |
---|
63 | vectors for the polydisperse parameters. *cutoff* determines the |
---|
64 | integration limits: any points with combined weight less than *cutoff* |
---|
65 | will not be calculated. |
---|
66 | |
---|
67 | Call :meth:`release` when done with the kernel instance. |
---|
68 | """ |
---|
69 | def __init__(self, kernel, info, q_input): |
---|
70 | self.info = info |
---|
71 | self.q_input = q_input |
---|
72 | self.res = np.empty(q_input.nq, q_input.dtype) |
---|
73 | dim = '2d' if q_input.is_2D else '1d' |
---|
74 | # Loop over q unless user promises that the kernel is vectorized by |
---|
75 | # taggining it with vectorized=True |
---|
76 | if not getattr(kernel, 'vectorized', False): |
---|
77 | if dim == '2d': |
---|
78 | def vector_kernel(qx, qy, *args): |
---|
79 | return np.array([kernel(qxi, qyi, *args) |
---|
80 | for qxi, qyi in zip(qx, qy)]) |
---|
81 | else: |
---|
82 | def vector_kernel(q, *args): |
---|
83 | return np.array([kernel(qi, *args) |
---|
84 | for qi in q]) |
---|
85 | self.kernel = vector_kernel |
---|
86 | else: |
---|
87 | self.kernel = kernel |
---|
88 | fixed_pars = info['partype']['fixed-' + dim] |
---|
89 | pd_pars = info['partype']['pd-' + dim] |
---|
90 | vol_pars = info['partype']['volume'] |
---|
91 | |
---|
92 | # First two fixed pars are scale and background |
---|
93 | pars = [p[0] for p in info['parameters'][2:]] |
---|
94 | offset = len(self.q_input.q_vectors) |
---|
95 | self.args = self.q_input.q_vectors + [None] * len(pars) |
---|
96 | self.fixed_index = np.array([pars.index(p) + offset |
---|
97 | for p in fixed_pars[2:]]) |
---|
98 | self.pd_index = np.array([pars.index(p) + offset |
---|
99 | for p in pd_pars]) |
---|
100 | self.vol_index = np.array([pars.index(p) + offset |
---|
101 | for p in vol_pars]) |
---|
102 | try: self.theta_index = pars.index('theta') + offset |
---|
103 | except ValueError: self.theta_index = -1 |
---|
104 | |
---|
105 | # Caller needs fixed_pars and pd_pars |
---|
106 | self.fixed_pars = fixed_pars |
---|
107 | self.pd_pars = pd_pars |
---|
108 | |
---|
109 | def __call__(self, fixed, pd, cutoff=1e-5): |
---|
110 | #print "fixed",fixed |
---|
111 | #print "pd", pd |
---|
112 | args = self.args[:] # grab a copy of the args |
---|
113 | form, form_volume = self.kernel, self.info['form_volume'] |
---|
114 | # First two fixed |
---|
115 | scale, background = fixed[:2] |
---|
116 | for index, value in zip(self.fixed_index, fixed[2:]): |
---|
117 | args[index] = float(value) |
---|
118 | res = _loops(form, form_volume, cutoff, scale, background, args, |
---|
119 | pd, self.pd_index, self.vol_index, self.theta_index) |
---|
120 | |
---|
121 | return res |
---|
122 | |
---|
123 | def release(self): |
---|
124 | self.q_input = None |
---|
125 | |
---|
126 | def _loops(form, form_volume, cutoff, scale, background, |
---|
127 | args, pd, pd_index, vol_index, theta_index): |
---|
128 | """ |
---|
129 | *form* is the name of the form function, which should be vectorized over |
---|
130 | q, but otherwise have an interface like the opencl kernels, with the |
---|
131 | q parameters first followed by the individual parameters in the order |
---|
132 | given in model.parameters (see :mod:`sasmodels.generate`). |
---|
133 | |
---|
134 | *form_volume* calculates the volume of the shape. *vol_index* gives |
---|
135 | the list of volume parameters |
---|
136 | |
---|
137 | *cutoff* ignores the corners of the dispersion hypercube |
---|
138 | |
---|
139 | *scale*, *background* multiplies the resulting form and adds an offset |
---|
140 | |
---|
141 | *args* is the prepopulated set of arguments to the form function, starting |
---|
142 | with the q vectors, and including slots for all the parameters. The |
---|
143 | values for the parameters will be substituted with values from the |
---|
144 | dispersion functions. |
---|
145 | |
---|
146 | *pd* is the list of dispersion parameters |
---|
147 | |
---|
148 | *pd_index* are the indices of the dispersion parameters in *args* |
---|
149 | |
---|
150 | *vol_index* are the indices of the volume parameters in *args* |
---|
151 | |
---|
152 | *theta_index* is the index of the theta parameter for the sasview |
---|
153 | spherical correction, or -1 if there is no angular dispersion |
---|
154 | """ |
---|
155 | |
---|
156 | ################################################################ |
---|
157 | # # |
---|
158 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # |
---|
159 | # !! !! # |
---|
160 | # !! KEEP THIS CODE CONSISTENT WITH KERNEL_TEMPLATE.C !! # |
---|
161 | # !! !! # |
---|
162 | # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # |
---|
163 | # # |
---|
164 | ################################################################ |
---|
165 | |
---|
166 | weight = np.empty(len(pd), 'd') |
---|
167 | if weight.size > 0: |
---|
168 | # weight vector, to be populated by polydispersity loops |
---|
169 | |
---|
170 | # identify which pd parameters are volume parameters |
---|
171 | vol_weight_index = np.array([(index in vol_index) for index in pd_index]) |
---|
172 | |
---|
173 | # Sort parameters in decreasing order of pd length |
---|
174 | Npd = np.array([len(pdi[0]) for pdi in pd], 'i') |
---|
175 | order = np.argsort(Npd)[::-1] |
---|
176 | stride = np.cumprod(Npd[order]) |
---|
177 | pd = [pd[index] for index in order] |
---|
178 | pd_index = pd_index[order] |
---|
179 | vol_weight_index = vol_weight_index[order] |
---|
180 | |
---|
181 | fast_value = pd[0][0] |
---|
182 | fast_weight = pd[0][1] |
---|
183 | else: |
---|
184 | stride = np.array([1]) |
---|
185 | vol_weight_index = slice(None, None) |
---|
186 | # keep lint happy |
---|
187 | fast_value = [None] |
---|
188 | fast_weight = [None] |
---|
189 | |
---|
190 | ret = np.zeros_like(args[0]) |
---|
191 | norm = np.zeros_like(ret) |
---|
192 | vol = np.zeros_like(ret) |
---|
193 | vol_norm = np.zeros_like(ret) |
---|
194 | for k in range(stride[-1]): |
---|
195 | # update polydispersity parameter values |
---|
196 | fast_index = k % stride[0] |
---|
197 | if fast_index == 0: # bottom loop complete ... check all other loops |
---|
198 | if weight.size > 0: |
---|
199 | for i, index, in enumerate(k % stride): |
---|
200 | args[pd_index[i]] = pd[i][0][index] |
---|
201 | weight[i] = pd[i][1][index] |
---|
202 | else: |
---|
203 | args[pd_index[0]] = fast_value[fast_index] |
---|
204 | weight[0] = fast_weight[fast_index] |
---|
205 | # This computes the weight, and if it is sufficient, calls the |
---|
206 | # scattering function and adds it to the total. If there is a volume |
---|
207 | # normalization, it will also be added here. |
---|
208 | # Note: make sure this is consistent with the code in PY_LOOP_BODY!! |
---|
209 | # Note: can precompute w1*w2*...*wn |
---|
210 | w = np.prod(weight) |
---|
211 | if w > cutoff: |
---|
212 | I = form(*args) |
---|
213 | #positive = (I >= 0.0) |
---|
214 | |
---|
215 | # Note: can precompute spherical correction if theta_index is not |
---|
216 | # the fast index. Correction factor for spherical integration |
---|
217 | #spherical_correction = abs(cos(pi*args[phi_index])) if phi_index>=0 else 1.0 |
---|
218 | spherical_correction = (abs(cos(pi * args[theta_index])) * pi / 2 |
---|
219 | if theta_index >= 0 else 1.0) |
---|
220 | #spherical_correction = 1.0 |
---|
221 | ret += w * I * spherical_correction #* positive |
---|
222 | norm += w #* positive |
---|
223 | |
---|
224 | # Volume normalization. |
---|
225 | # If there are "volume" polydispersity parameters, then these |
---|
226 | # will be used to call the form_volume function from the user |
---|
227 | # supplied kernel, and accumulate a normalized weight. |
---|
228 | # Note: can precompute volume norm if fast index is not a volume |
---|
229 | if form_volume: |
---|
230 | vol_args = [args[index] for index in vol_index] |
---|
231 | vol_weight = np.prod(weight[vol_weight_index]) |
---|
232 | vol += vol_weight * form_volume(*vol_args) #* positive |
---|
233 | vol_norm += vol_weight #* positive |
---|
234 | |
---|
235 | positive = (vol * vol_norm != 0.0) |
---|
236 | ret[positive] *= vol_norm[positive] / vol[positive] |
---|
237 | result = scale * ret / norm + background |
---|
238 | return result |
---|