source: sasmodels/sasmodels/kernel_iq.c @ fec69dd

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since fec69dd was fec69dd, checked in by Paul Kienzle <pkienzle@…>, 8 years ago

debugging mess

  • Property mode set to 100644
File size: 7.6 KB
Line 
1
2/*
3    ##########################################################
4    #                                                        #
5    #   !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!   #
6    #   !!                                              !!   #
7    #   !!  KEEP THIS CODE CONSISTENT WITH KERNELPY.PY  !!   #
8    #   !!                                              !!   #
9    #   !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!   #
10    #                                                        #
11    ##########################################################
12*/
13
14#ifndef _PAR_BLOCK_ // protected block so we can include this code twice.
15#define _PAR_BLOCK_
16
17#define MAX_PD 4  // MAX_PD is the max number of polydisperse parameters
18
19typedef struct {
20    int32_t pd_par[MAX_PD];     // id of the nth polydispersity variable
21    int32_t pd_length[MAX_PD];  // length of the nth polydispersity weight vector
22    int32_t pd_offset[MAX_PD];  // offset of pd weights in the value & weight vector
23    int32_t pd_stride[MAX_PD];  // stride to move to the next index at this level
24    int32_t pd_isvol[MAX_PD];   // True if parameter is a volume weighting parameter
25    int32_t par_offset[NPARS];  // offset of par values in the value & weight vector
26    int32_t par_coord[NPARS];   // polydispersity coordination bitvector
27    int32_t fast_coord_pars[NPARS]; // ids of the fast coordination parameters
28    int32_t fast_coord_count;   // number of parameters coordinated with pd 1
29    int32_t theta_par;          // id of spherical correction variable
30} ProblemDetails;
31
32typedef struct {
33    PARAMETER_TABLE;
34} ParameterBlock;
35#endif
36
37
38kernel
39void KERNEL_NAME(
40    int32_t nq,                 // number of q values
41    const int32_t pd_start,     // where we are in the polydispersity loop
42    const int32_t pd_stop,      // where we are stopping in the polydispersity loop
43    global const ProblemDetails *problem,
44    global const double *weights,
45    global const double *values,
46    global const double *q, // nq q values, with padding to boundary
47    global double *result,  // nq+3 return values, again with padding
48    const double cutoff     // cutoff in the polydispersity weight product
49    )
50{
51  // Storage for the current parameter values.  These will be updated as we
52  // walk the polydispersity cube.
53  local ParameterBlock local_values;  // current parameter values
54  double *pvec = (double *)(&local_values);  // Alias named parameters with a vector
55
56  local int offset[NPARS];  // NPARS excludes scale/background
57
58#if 0 // defined(USE_SHORTCUT_OPTIMIZATION)
59  if (problem->pd_length[0] == 1) {
60    // Shouldn't need to copy!!
61
62    for (int k=0; k < NPARS; k++) {
63      pvec[k] = values[k+2];  // skip scale and background
64    }
65
66    const double volume = CALL_VOLUME(local_values);
67    #ifdef USE_OPENMP
68    #pragma omp parallel for
69    #endif
70    for (int i=0; i < nq; i++) {
71      const double scattering = CALL_IQ(q, i, local_values);
72      result[i] = values[0]*scattering/volume + values[1];
73    }
74    return;
75  }
76  printf("falling through\n");
77#endif
78
79  printf("Entering polydispersity\n");
80  // Since we are no longer looping over the entire polydispersity hypercube
81  // for each q, we need to track the normalization values for each q in a
82  // separate work vector.
83  double norm;   // contains sum over weights
84  double vol; // contains sum over volume
85  double norm_vol; // contains weights over volume
86
87  // Initialize the results to zero
88  if (pd_start == 0) {
89    norm_vol = 0.0;
90    norm = 0.0;
91    vol = 0.0;
92
93    #ifdef USE_OPENMP
94    #pragma omp parallel for
95    #endif
96    for (int i=0; i < nq; i++) {
97      result[i] = 0.0;
98    }
99  } else {
100    //Pulling values from previous segment
101    norm = result[nq];
102    vol = result[nq+1];
103    norm_vol = result[nq+2];
104  }
105
106  // Location in the polydispersity hypercube, one index per dimension.
107  local int pd_index[MAX_PD];
108
109  // Trigger the reset behaviour that happens at the end the fast loop
110  // by setting the initial index >= weight vector length.
111  pd_index[0] = problem->pd_length[0];
112
113
114  // need product of weights at every Iq calc, so keep product of
115  // weights from the outer loops so that weight = partial_weight * fast_weight
116  double partial_weight = NAN; // product of weight w4*w3*w2 but not w1
117  double partial_volweight = NAN;
118  double weight = 1.0;        // set to 1 in case there are no weights
119  double vol_weight = 1.0;    // set to 1 in case there are no vol weights
120  double spherical_correction = 1.0;  // correction for latitude variation
121
122  // Loop over the weights then loop over q, accumulating values
123  for (int loop_index=pd_start; loop_index < pd_stop; loop_index++) {
124    // check if indices need to be updated
125    if (pd_index[0] >= problem->pd_length[0]) {
126
127      // RESET INDICES
128      pd_index[0] = loop_index%problem->pd_length[0];
129      partial_weight = 1.0;
130      partial_volweight = 1.0;
131      for (int k=1; k < MAX_PD; k++) {
132        pd_index[k] = (loop_index%problem->pd_length[k])/problem->pd_stride[k];
133        const double wi = weights[problem->pd_offset[0]+pd_index[0]];
134        partial_weight *= wi;
135        if (problem->pd_isvol[k]) partial_volweight *= wi;
136      }
137      for (int k=0; k < NPARS; k++) {
138        int coord = problem->par_coord[k];
139        int this_offset = problem->par_offset[k];
140        int block_size = 1;
141        for (int bit=0; bit < MAX_PD && coord != 0; bit++) {
142          if (coord&1) {
143              this_offset += block_size * pd_index[bit];
144              block_size *= problem->pd_length[bit];
145          }
146          coord /= 2;
147        }
148        offset[k] = this_offset;
149        pvec[k] = values[this_offset];
150      }
151      weight = partial_weight * weights[problem->pd_offset[0]+pd_index[0]];
152      if (problem->theta_par >= 0) {
153        spherical_correction = fabs(cos(M_PI_180*pvec[problem->theta_par]));
154      }
155      if (problem->theta_par == problem->pd_par[0]) {
156        weight *= spherical_correction;
157      }
158
159    } else {
160
161      // INCREMENT INDICES
162      pd_index[0] += 1;
163      const double wi = weights[problem->pd_offset[0]+pd_index[0]];
164      weight = partial_weight*wi;
165      if (problem->pd_isvol[0]) vol_weight *= wi;
166      for (int k=0; k < problem->fast_coord_count; k++) {
167         printf("fast loop %d coord %d idx %d ?%d offset %d %g\n",
168         k,problem->fast_coord_pars[k],pd_index[0],
169        problem->fast_coord_pars[k],
170            offset[problem->fast_coord_pars[k]],
171            values[offset[problem->fast_coord_pars[k]]]
172          );
173        pvec[problem->fast_coord_pars[k]]
174            = values[offset[problem->fast_coord_pars[k]]++];
175
176      }
177      if (problem->theta_par ==problem->pd_par[0]) {
178        weight *= fabs(cos(M_PI_180*pvec[problem->theta_par]));
179      }
180    }
181    printf("rad len %f %f\n",local_values.radius, local_values.length);
182    #ifdef INVALID
183    if (INVALID(local_values)) continue;
184    #endif
185
186    // Accumulate I(q)
187    // Note: weight==0 must always be excluded
188    if (weight > cutoff) {
189      norm += weight;
190      vol += vol_weight * CALL_VOLUME(local_values);
191      norm_vol += vol_weight;
192
193      #ifdef USE_OPENMP
194      #pragma omp parallel for
195      #endif
196      for (int i=0; i < nq; i++) {
197        const double scattering = CALL_IQ(q, i, local_values);
198        result[i] += weight*scattering;
199      }
200    }
201  }
202
203  //Makes a normalization avialable for the next round
204  result[nq] = norm;
205  result[nq+1] = vol;
206  result[nq+2] = norm_vol;
207
208  //End of the PD loop we can normalize
209  if (pd_stop >= problem->pd_stride[MAX_PD-1]) {
210    #ifdef USE_OPENMP
211    #pragma omp parallel for
212    #endif
213    for (int i=0; i < nq; i++) {
214      if (vol*norm_vol != 0.0) {
215        result[i] *= norm_vol/vol;
216      }
217      result[i] = values[0]*result[i]/norm + values[1];
218    }
219  }
220}
Note: See TracBrowser for help on using the repository browser.