source: sasmodels/sasmodels/kernel_iq.c @ 7ff3cf3

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 7ff3cf3 was 7ff3cf3, checked in by Paul Kienzle <pkienzle@…>, 8 years ago

getting past hello…

  • Property mode set to 100644
File size: 7.2 KB
Line 
1
2/*
3    ##########################################################
4    #                                                        #
5    #   !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!   #
6    #   !!                                              !!   #
7    #   !!  KEEP THIS CODE CONSISTENT WITH KERNELPY.PY  !!   #
8    #   !!                                              !!   #
9    #   !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!   #
10    #                                                        #
11    ##########################################################
12*/
13
14#ifndef _PAR_BLOCK_ // protected block so we can include this code twice.
15#define _PAR_BLOCK_
16
17#define MAX_PD 4  // MAX_PD is the max number of polydisperse parameters
18
19typedef struct {
20    int pd_par[MAX_PD];     // index of the nth polydispersity variable
21    int pd_length[MAX_PD];  // length of the nth polydispersity weight vector
22    int pd_offset[MAX_PD];  // offset of pd weights in the par & weight vector
23    int pd_stride[MAX_PD];  // stride to move to the next index at this level
24    int pd_isvol[MAX_PD];   // True if parameter is a volume weighting parameter
25    int par_offset[NPARS];  // offset of par values in the par & weight vector
26    int par_coord[NPARS];   // polydispersity coordination bitvector
27    int fast_coord_index[NPARS]; // index of the fast coordination parameters
28    int fast_coord_count;   // number of parameters coordinated with pd 1
29    int theta_var;          // id of spherical correction variable
30    int fast_theta;         // true if spherical correction depends on pd 1
31} ProblemDetails;
32
33typedef struct {
34    PARAMETER_TABLE;
35} ParameterBlock;
36#endif
37
38
39kernel
40void KERNEL_NAME(
41    int nq,                 // number of q values
42    const int pd_start,     // where we are in the polydispersity loop
43    const int pd_stop,      // where we are stopping in the polydispersity loop
44    global const ProblemDetails *problem,
45    global const double *weights,
46    global const double *pars,
47    global const double *q, // nq q values, with padding to boundary
48    global double *result,  // nq+3 return values, again with padding
49    const double cutoff     // cutoff in the polydispersity weight product
50    )
51{
52  // Storage for the current parameter values.  These will be updated as we
53  // walk the polydispersity cube.
54  local ParameterBlock local_pars;  // current parameter values
55  double *pvec = (double *)(&local_pars);  // Alias named parameters with a vector
56
57  local int offset[NPARS-2];
58
59#if 1 // defined(USE_SHORTCUT_OPTIMIZATION)
60  if (problem->pd_length[0] == 1) {
61    // Shouldn't need to copy!!
62    printf("copying\n");
63    for (int k=0; k < NPARS; k++) {
64      pvec[k] = pars[k+2];  // skip scale and background
65    }
66    printf("calculating\n");
67
68    #ifdef USE_OPENMP
69    #pragma omp parallel for
70    #endif
71    for (int i=0; i < nq; i++) {
72      const double scattering = CALL_IQ(q, i, local_pars);
73      result[i] += pars[0]*scattering + pars[1];
74    }
75    printf("returning\n");
76    return;
77  }
78  printf("falling through\n");
79#endif
80
81
82  // Since we are no longer looping over the entire polydispersity hypercube
83  // for each q, we need to track the normalization values for each q in a
84  // separate work vector.
85  double norm;   // contains sum over weights
86  double vol; // contains sum over volume
87  double norm_vol; // contains weights over volume
88
89  // Initialize the results to zero
90  if (pd_start == 0) {
91    norm_vol = 0.0;
92    norm = 0.0;
93    vol = 0.0;
94
95    #ifdef USE_OPENMP
96    #pragma omp parallel for
97    #endif
98    for (int i=0; i < nq; i++) {
99      result[i] = 0.0;
100    }
101  } else {
102    //Pulling values from previous segment
103    norm = result[nq];
104    vol = result[nq+1];
105    norm_vol = result[nq+2];
106  }
107
108  // Location in the polydispersity hypercube, one index per dimension.
109  local int pd_index[MAX_PD];
110
111  // Trigger the reset behaviour that happens at the end the fast loop
112  // by setting the initial index >= weight vector length.
113  pd_index[0] = problem->pd_length[0];
114
115
116  // need product of weights at every Iq calc, so keep product of
117  // weights from the outer loops so that weight = partial_weight * fast_weight
118  double partial_weight = NAN; // product of weight w4*w3*w2 but not w1
119  double partial_volweight = NAN;
120  double weight = 1.0;        // set to 1 in case there are no weights
121  double vol_weight = 1.0;    // set to 1 in case there are no vol weights
122  double spherical_correction = 1.0;  // correction for latitude variation
123
124  // Loop over the weights then loop over q, accumulating values
125  for (int loop_index=pd_start; loop_index < pd_stop; loop_index++) {
126    // check if indices need to be updated
127    if (pd_index[0] >= problem->pd_length[0]) {
128
129      // RESET INDICES
130      pd_index[0] = loop_index%problem->pd_length[0];
131      partial_weight = 1.0;
132      partial_volweight = 1.0;
133      for (int k=1; k < MAX_PD; k++) {
134        pd_index[k] = (loop_index%problem->pd_length[k])/problem->pd_stride[k];
135        const double wi = weights[problem->pd_offset[0]+pd_index[0]];
136        partial_weight *= wi;
137        if (problem->pd_isvol[k]) partial_volweight *= wi;
138      }
139      for (int k=0; k < NPARS; k++) {
140        int coord = problem->par_coord[k];
141        int this_offset = problem->par_offset[k];
142        int block_size = 1;
143        for (int bit=0; bit < MAX_PD && coord != 0; bit++) {
144          if (coord&1) {
145              this_offset += block_size * pd_index[bit];
146              block_size *= problem->pd_length[bit];
147          }
148          coord /= 2;
149        }
150        offset[k] = this_offset;
151        pvec[k] = pars[this_offset];
152      }
153      weight = partial_weight * weights[problem->pd_offset[0]+pd_index[0]];
154      if (problem->theta_var >= 0) {
155        spherical_correction = fabs(cos(M_PI_180*pvec[problem->theta_var]));
156      }
157      if (!problem->fast_theta) {
158        weight *= spherical_correction;
159      }
160
161    } else {
162
163      // INCREMENT INDICES
164      pd_index[0] += 1;
165      const double wi = weights[problem->pd_offset[0]+pd_index[0]];
166      weight = partial_weight*wi;
167      if (problem->pd_isvol[0]) vol_weight *= wi;
168      for (int k=0; k < problem->fast_coord_count; k++) {
169        pvec[problem->fast_coord_index[k]]
170            = pars[offset[problem->fast_coord_index[k]]++];
171      }
172      if (problem->fast_theta) {
173        weight *= fabs(cos(M_PI_180*pvec[problem->theta_var]));
174      }
175    }
176
177    #ifdef INVALID
178    if (INVALID(local_pars)) continue;
179    #endif
180
181    // Accumulate I(q)
182    // Note: weight==0 must always be excluded
183    if (weight > cutoff) {
184      norm += weight;
185      vol += vol_weight * CALL_VOLUME(local_pars);
186      norm_vol += vol_weight;
187
188      #ifdef USE_OPENMP
189      #pragma omp parallel for
190      #endif
191      for (int i=0; i < nq; i++) {
192        const double scattering = CALL_IQ(q, i, local_pars);
193        result[i] += weight*scattering;
194      }
195    }
196  }
197  //Makes a normalization avialable for the next round
198  result[nq] = norm;
199  result[nq+1] = vol;
200  result[nq+2] = norm_vol;
201
202  //End of the PD loop we can normalize
203  if (pd_stop >= problem->pd_stride[MAX_PD-1]) {
204    #ifdef USE_OPENMP
205    #pragma omp parallel for
206    #endif
207    for (int i=0; i < nq; i++) {
208      if (vol*norm_vol != 0.0) {
209        result[i] *= norm_vol/vol;
210      }
211      result[i] = pars[0]*result[i]/norm + pars[1];
212    }
213  }
214}
Note: See TracBrowser for help on using the repository browser.