source: sasmodels/sasmodels/kernel_header.c @ 73cbc5b

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 73cbc5b was 73cbc5b, checked in by Paul Kienzle <pkienzle@…>, 7 years ago

Merge branch 'master' into ticket-776-orientation

  • Property mode set to 100644
File size: 8.0 KB
RevLine 
[2e44ac7]1#ifdef __OPENCL_VERSION__
2# define USE_OPENCL
[03cac08]3#elif defined(_OPENMP)
4# define USE_OPENMP
[2e44ac7]5#endif
6
7// If opencl is not available, then we are compiling a C function
8// Note: if using a C++ compiler, then define kernel as extern "C"
[1557a1e]9#ifdef USE_OPENCL
10   typedef int int32_t;
11#  if defined(USE_SINCOS)
12#    define SINCOS(angle,svar,cvar) svar=sincos(angle,&cvar)
13#  else
14#    define SINCOS(angle,svar,cvar) do {const double _t_=angle; svar=sin(_t_);cvar=cos(_t_);} while (0)
15#  endif
[bb4b509]16   // Intel CPU on Mac gives strange values for erf(); on the verified
[e1d6983]17   // platforms (intel, nvidia, amd), the cephes erf() is significantly
18   // faster than that available in the native OpenCL.
[38ce0ab]19   #define NEED_ERF
[1557a1e]20   // OpenCL only has type generic math
[b3796fa]21   #define expf exp
[38ce0ab]22   #ifndef NEED_ERF
23   #  define erff erf
24   #  define erfcf erfc
25   #endif
[1557a1e]26#else // !USE_OPENCL
[b966a96]27// Use SAS_DOUBLE to force the use of double even for float kernels
28#  define SAS_DOUBLE dou ## ble
[2e44ac7]29#  ifdef __cplusplus
30      #include <cstdio>
31      #include <cmath>
32      using namespace std;
33      #if defined(_MSC_VER)
34         #include <limits>
35         #include <float.h>
36         #define kernel extern "C" __declspec( dllexport )
[b966a96]37         inline double trunc(double x) { return x>=0?floor(x):-floor(-x); }
38         inline double fmin(double x, double y) { return x>y ? y : x; }
39         inline double fmax(double x, double y) { return x<y ? y : x; }
40         #define isnan(x) _isnan(x)
41         #define isinf(x) (!_finite(x))
42         #define isfinite(x) _finite(x)
[2e44ac7]43         #define NAN (std::numeric_limits<double>::quiet_NaN()) // non-signalling NaN
[b966a96]44         #define INFINITY (std::numeric_limits<double>::infinity())
[1557a1e]45         #define NEED_ERF
[b966a96]46         #define NEED_EXPM1
47         #define NEED_TGAMMA
[2e44ac7]48     #else
49         #define kernel extern "C"
[5cf3c33]50         #include <cstdint>
[2e44ac7]51     #endif
[b966a96]52     inline void SINCOS(double angle, double &svar, double &cvar) { svar=sin(angle); cvar=cos(angle); }
[1557a1e]53#  else // !__cplusplus
[5cf3c33]54     #include <inttypes.h>  // C99 guarantees that int32_t types is here
[2e44ac7]55     #include <stdio.h>
[b966a96]56     #if defined(__TINYC__)
57         typedef int int32_t;
58         #include <math.h>
[bb4b509]59         // TODO: check isnan is correct
[b966a96]60         inline double _isnan(double x) { return x != x; } // hope this doesn't optimize away!
61         #undef isnan
62         #define isnan(x) _isnan(x)
63         // Defeat the double->float conversion since we don't have tgmath
64         inline SAS_DOUBLE trunc(SAS_DOUBLE x) { return x>=0?floor(x):-floor(-x); }
65         inline SAS_DOUBLE fmin(SAS_DOUBLE x, SAS_DOUBLE y) { return x>y ? y : x; }
66         inline SAS_DOUBLE fmax(SAS_DOUBLE x, SAS_DOUBLE y) { return x<y ? y : x; }
[1557a1e]67         #define NEED_ERF
[b966a96]68         #define NEED_EXPM1
69         #define NEED_TGAMMA
[edf06e1]70         // expf missing from windows?
71         #define expf exp
[b966a96]72     #else
73         #include <tgmath.h> // C99 type-generic math, so sin(float) => sinf
74     #endif
[2e44ac7]75     // MSVC doesn't support C99, so no need for dllexport on C99 branch
76     #define kernel
77     #define SINCOS(angle,svar,cvar) do {const double _t_=angle; svar=sin(_t_);cvar=cos(_t_);} while (0)
[1557a1e]78#  endif  // !__cplusplus
[2e44ac7]79#  define global
80#  define local
81#  define constant const
82// OpenCL powr(a,b) = C99 pow(a,b), b >= 0
83// OpenCL pown(a,b) = C99 pow(a,b), b integer
84#  define powr(a,b) pow(a,b)
85#  define pown(a,b) pow(a,b)
[1557a1e]86#endif // !USE_OPENCL
[2e44ac7]87
[b966a96]88#if defined(NEED_EXPM1)
89   static SAS_DOUBLE expm1(SAS_DOUBLE x_in) {
90      double x = (double)x_in;  // go back to float for single precision kernels
91      // Adapted from the cephes math library.
92      // Copyright 1984 - 1992 by Stephen L. Moshier
93      if (x != x || x == 0.0) {
94         return x; // NaN and +/- 0
95      } else if (x < -0.5 || x > 0.5) {
96         return exp(x) - 1.0;
97      } else {
98         const double xsq = x*x;
99         const double p = (((
100            +1.2617719307481059087798E-4)*xsq
101            +3.0299440770744196129956E-2)*xsq
102            +9.9999999999999999991025E-1);
103         const double q = ((((
104            +3.0019850513866445504159E-6)*xsq
105            +2.5244834034968410419224E-3)*xsq
106            +2.2726554820815502876593E-1)*xsq
107            +2.0000000000000000000897E0);
108         double r = x * p;
109         r =  r / (q - r);
110         return r+r;
111       }
112   }
113#endif
114
[2e44ac7]115// Standard mathematical constants:
116//   M_E, M_LOG2E, M_LOG10E, M_LN2, M_LN10, M_PI, M_PI_2=pi/2, M_PI_4=pi/4,
117//   M_1_PI=1/pi, M_2_PI=2/pi, M_2_SQRTPI=2/sqrt(pi), SQRT2, SQRT1_2=sqrt(1/2)
118// OpenCL defines M_constant_F for float constants, and nothing if double
119// is not enabled on the card, which is why these constants may be missing
120#ifndef M_PI
121#  define M_PI 3.141592653589793
122#endif
123#ifndef M_PI_2
124#  define M_PI_2 1.570796326794897
125#endif
126#ifndef M_PI_4
127#  define M_PI_4 0.7853981633974483
128#endif
129#ifndef M_E
130#  define M_E 2.718281828459045091
131#endif
[b3796fa]132#ifndef M_SQRT1_2
133#  define M_SQRT1_2 0.70710678118654746
134#endif
[2e44ac7]135
136// Non-standard function library
137// pi/180, used for converting between degrees and radians
138// 4/3 pi for computing sphere volumes
139// square and cube for computing squares and cubes
140#ifndef M_PI_180
141#  define M_PI_180 0.017453292519943295
142#endif
143#ifndef M_4PI_3
144#  define M_4PI_3 4.18879020478639
145#endif
[b966a96]146inline double square(double x) { return x*x; }
147inline double cube(double x) { return x*x*x; }
[1e7b0db0]148inline double sas_sinx_x(double x) { return x==0 ? 1.0 : sin(x)/x; }
[2e44ac7]149
[b00a646]150// To rotate from the canonical position to theta, phi, psi, first rotate by
151// psi about the major axis, oriented along z, which is a rotation in the
152// detector plane xy. Next rotate by theta about the y axis, aligning the major
153// axis in the xz plane. Finally, rotate by phi in the detector plane xy.
154// To compute the scattering, undo these rotations in reverse order:
155//     rotate in xy by -phi, rotate in xz by -theta, rotate in xy by -psi
156// The returned q is the length of the q vector and (xhat, yhat, zhat) is a unit
157// vector in the q direction.
158// To change between counterclockwise and clockwise rotation, change the
159// sign of phi and psi.
160
[f1ec7002]161#if 1
[b7e8b94]162//think cos(theta) should be sin(theta) in new coords, RKH 11Jan2017
[218cdbc]163#define ORIENT_SYMMETRIC(qx, qy, theta, phi, q, sn, cn) do { \
164    SINCOS(phi*M_PI_180, sn, cn); \
165    q = sqrt(qx*qx + qy*qy); \
[9901384]166    cn = (q==0. ? 1.0 : (cn*qx + sn*qy)/q * sin(theta*M_PI_180));  \
[218cdbc]167    sn = sqrt(1 - cn*cn); \
168    } while (0)
169#else
170// SasView 3.x definition of orientation
171#define ORIENT_SYMMETRIC(qx, qy, theta, phi, q, sn, cn) do { \
172    SINCOS(theta*M_PI_180, sn, cn); \
173    q = sqrt(qx*qx + qy*qy);\
174    cn = (q==0. ? 1.0 : (cn*cos(phi*M_PI_180)*qx + sn*qy)/q); \
175    sn = sqrt(1 - cn*cn); \
176    } while (0)
177#endif
[11ca2ab]178
[b00a646]179#if 1
180#define ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, xhat, yhat, zhat) do { \
181    q = sqrt(qx*qx + qy*qy); \
182    const double qxhat = qx/q; \
183    const double qyhat = qy/q; \
184    double sin_theta, cos_theta; \
185    double sin_phi, cos_phi; \
186    double sin_psi, cos_psi; \
187    SINCOS(theta*M_PI_180, sin_theta, cos_theta); \
188    SINCOS(phi*M_PI_180, sin_phi, cos_phi); \
189    SINCOS(psi*M_PI_180, sin_psi, cos_psi); \
190    xhat = qxhat*(-sin_phi*sin_psi + cos_theta*cos_phi*cos_psi) \
191         + qyhat*( cos_phi*sin_psi + cos_theta*sin_phi*cos_psi); \
192    yhat = qxhat*(-sin_phi*cos_psi - cos_theta*cos_phi*sin_psi) \
193         + qyhat*( cos_phi*cos_psi - cos_theta*sin_phi*sin_psi); \
194    zhat = qxhat*(-sin_theta*cos_phi) \
195         + qyhat*(-sin_theta*sin_phi); \
196    } while (0)
197#else
198// SasView 3.x definition of orientation
[218cdbc]199#define ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, cos_alpha, cos_mu, cos_nu) do { \
[11ca2ab]200    q = sqrt(qx*qx + qy*qy); \
201    const double qxhat = qx/q; \
202    const double qyhat = qy/q; \
203    double sin_theta, cos_theta; \
204    double sin_phi, cos_phi; \
205    double sin_psi, cos_psi; \
206    SINCOS(theta*M_PI_180, sin_theta, cos_theta); \
207    SINCOS(phi*M_PI_180, sin_phi, cos_phi); \
208    SINCOS(psi*M_PI_180, sin_psi, cos_psi); \
209    cos_alpha = cos_theta*cos_phi*qxhat + sin_theta*qyhat; \
210    cos_mu = (-sin_theta*cos_psi*cos_phi - sin_psi*sin_phi)*qxhat + cos_theta*cos_psi*qyhat; \
211    cos_nu = (-cos_phi*sin_psi*sin_theta + sin_phi*cos_psi)*qxhat + sin_psi*cos_theta*qyhat; \
[218cdbc]212    } while (0)
[b00a646]213#endif
Note: See TracBrowser for help on using the repository browser.