1 | #!/usr/bin/env python |
---|
2 | # -*- coding: utf-8 -*- |
---|
3 | """ |
---|
4 | Jitter Explorer |
---|
5 | =============== |
---|
6 | |
---|
7 | Application to explore orientation angle and angular dispersity. |
---|
8 | |
---|
9 | From the command line:: |
---|
10 | |
---|
11 | # Show docs |
---|
12 | python -m sasmodels.jitter --help |
---|
13 | |
---|
14 | # Guyou projection jitter, uniform over 20 degree theta and 10 in phi |
---|
15 | python -m sasmodels.jitter --projection=guyou --dist=uniform --jitter=20,10,0 |
---|
16 | |
---|
17 | From a jupyter cell:: |
---|
18 | |
---|
19 | import ipyvolume as ipv |
---|
20 | from sasmodels import jitter |
---|
21 | import importlib; importlib.reload(jitter) |
---|
22 | jitter.set_plotter("ipv") |
---|
23 | |
---|
24 | size = (10, 40, 100) |
---|
25 | view = (20, 0, 0) |
---|
26 | |
---|
27 | #size = (15, 15, 100) |
---|
28 | #view = (60, 60, 0) |
---|
29 | |
---|
30 | dview = (0, 0, 0) |
---|
31 | #dview = (5, 5, 0) |
---|
32 | #dview = (15, 180, 0) |
---|
33 | #dview = (180, 15, 0) |
---|
34 | |
---|
35 | projection = 'equirectangular' |
---|
36 | #projection = 'azimuthal_equidistance' |
---|
37 | #projection = 'guyou' |
---|
38 | #projection = 'sinusoidal' |
---|
39 | #projection = 'azimuthal_equal_area' |
---|
40 | |
---|
41 | dist = 'uniform' |
---|
42 | #dist = 'gaussian' |
---|
43 | |
---|
44 | jitter.run(size=size, view=view, jitter=dview, dist=dist, projection=projection) |
---|
45 | #filename = projection+('_theta' if dview[0] == 180 else '_phi' if dview[1] == 180 else '') |
---|
46 | #ipv.savefig(filename+'.png') |
---|
47 | """ |
---|
48 | from __future__ import division, print_function |
---|
49 | |
---|
50 | import argparse |
---|
51 | |
---|
52 | import numpy as np |
---|
53 | from numpy import pi, cos, sin, sqrt, exp, log, degrees, radians, arccos, arctan2 |
---|
54 | |
---|
55 | # Too many complaints about variable names from pylint: |
---|
56 | # a, b, c, u, v, x, y, z, dx, dy, dz, px, py, pz, R, Rx, Ry, Rz, ... |
---|
57 | # pylint: disable=invalid-name |
---|
58 | |
---|
59 | def draw_beam(axes, view=(0, 0), alpha=0.5, steps=25): |
---|
60 | """ |
---|
61 | Draw the beam going from source at (0, 0, 1) to detector at (0, 0, -1) |
---|
62 | """ |
---|
63 | #axes.plot([0,0],[0,0],[1,-1]) |
---|
64 | #axes.scatter([0]*100,[0]*100,np.linspace(1, -1, 100), alpha=alpha) |
---|
65 | |
---|
66 | u = np.linspace(0, 2 * pi, steps) |
---|
67 | v = np.linspace(-1, 1, 2) |
---|
68 | |
---|
69 | r = 0.02 |
---|
70 | x = r*np.outer(cos(u), np.ones_like(v)) |
---|
71 | y = r*np.outer(sin(u), np.ones_like(v)) |
---|
72 | z = 1.3*np.outer(np.ones_like(u), v) |
---|
73 | |
---|
74 | theta, phi = view |
---|
75 | shape = x.shape |
---|
76 | points = np.matrix([x.flatten(), y.flatten(), z.flatten()]) |
---|
77 | points = Rz(phi)*Ry(theta)*points |
---|
78 | x, y, z = [v.reshape(shape) for v in points] |
---|
79 | axes.plot_surface(x, y, z, color='yellow', alpha=alpha) |
---|
80 | |
---|
81 | # TODO: draw endcaps on beam |
---|
82 | ## Drawing tiny balls on the end will work |
---|
83 | #draw_sphere(axes, radius=0.02, center=(0, 0, 1.3), color='yellow', alpha=alpha) |
---|
84 | #draw_sphere(axes, radius=0.02, center=(0, 0, -1.3), color='yellow', alpha=alpha) |
---|
85 | ## The following does not work |
---|
86 | #triangles = [(0, i+1, i+2) for i in range(steps-2)] |
---|
87 | #x_cap, y_cap = x[:, 0], y[:, 0] |
---|
88 | #for z_cap in z[:, 0], z[:, -1]: |
---|
89 | # axes.plot_trisurf(x_cap, y_cap, z_cap, triangles, |
---|
90 | # color='yellow', alpha=alpha) |
---|
91 | |
---|
92 | |
---|
93 | def draw_ellipsoid(axes, size, view, jitter, steps=25, alpha=1): |
---|
94 | """Draw an ellipsoid.""" |
---|
95 | a, b, c = size |
---|
96 | u = np.linspace(0, 2 * pi, steps) |
---|
97 | v = np.linspace(0, pi, steps) |
---|
98 | x = a*np.outer(cos(u), sin(v)) |
---|
99 | y = b*np.outer(sin(u), sin(v)) |
---|
100 | z = c*np.outer(np.ones_like(u), cos(v)) |
---|
101 | x, y, z = transform_xyz(view, jitter, x, y, z) |
---|
102 | |
---|
103 | axes.plot_surface(x, y, z, color='w', alpha=alpha) |
---|
104 | |
---|
105 | draw_labels(axes, view, jitter, [ |
---|
106 | ('c+', [+0, +0, +c], [+1, +0, +0]), |
---|
107 | ('c-', [+0, +0, -c], [+0, +0, -1]), |
---|
108 | ('a+', [+a, +0, +0], [+0, +0, +1]), |
---|
109 | ('a-', [-a, +0, +0], [+0, +0, -1]), |
---|
110 | ('b+', [+0, +b, +0], [-1, +0, +0]), |
---|
111 | ('b-', [+0, -b, +0], [-1, +0, +0]), |
---|
112 | ]) |
---|
113 | |
---|
114 | def draw_sc(axes, size, view, jitter, steps=None, alpha=1): |
---|
115 | """Draw points for simple cubic paracrystal""" |
---|
116 | # pylint: disable=unused-argument |
---|
117 | atoms = _build_sc() |
---|
118 | _draw_crystal(axes, size, view, jitter, atoms=atoms) |
---|
119 | |
---|
120 | def draw_fcc(axes, size, view, jitter, steps=None, alpha=1): |
---|
121 | """Draw points for face-centered cubic paracrystal""" |
---|
122 | # pylint: disable=unused-argument |
---|
123 | # Build the simple cubic crystal |
---|
124 | atoms = _build_sc() |
---|
125 | # Define the centers for each face |
---|
126 | # x planes at -1, 0, 1 have four centers per plane, at +/- 0.5 in y and z |
---|
127 | x, y, z = ( |
---|
128 | [-1]*4 + [0]*4 + [1]*4, |
---|
129 | ([-0.5]*2 + [0.5]*2)*3, |
---|
130 | [-0.5, 0.5]*12, |
---|
131 | ) |
---|
132 | # y and z planes can be generated by substituting x for y and z respectively |
---|
133 | atoms.extend(zip(x+y+z, y+z+x, z+x+y)) |
---|
134 | _draw_crystal(axes, size, view, jitter, atoms=atoms) |
---|
135 | |
---|
136 | def draw_bcc(axes, size, view, jitter, steps=None, alpha=1): |
---|
137 | """Draw points for body-centered cubic paracrystal""" |
---|
138 | # pylint: disable=unused-argument |
---|
139 | # Build the simple cubic crystal |
---|
140 | atoms = _build_sc() |
---|
141 | # Define the centers for each octant |
---|
142 | # x plane at +/- 0.5 have four centers per plane at +/- 0.5 in y and z |
---|
143 | x, y, z = ( |
---|
144 | [-0.5]*4 + [0.5]*4, |
---|
145 | ([-0.5]*2 + [0.5]*2)*2, |
---|
146 | [-0.5, 0.5]*8, |
---|
147 | ) |
---|
148 | atoms.extend(zip(x, y, z)) |
---|
149 | _draw_crystal(axes, size, view, jitter, atoms=atoms) |
---|
150 | |
---|
151 | def _draw_crystal(axes, size, view, jitter, atoms=None): |
---|
152 | atoms, size = np.asarray(atoms, 'd').T, np.asarray(size, 'd') |
---|
153 | x, y, z = atoms*size[:, None] |
---|
154 | x, y, z = transform_xyz(view, jitter, x, y, z) |
---|
155 | axes.scatter([x[0]], [y[0]], [z[0]], c='yellow', marker='o') |
---|
156 | axes.scatter(x[1:], y[1:], z[1:], c='r', marker='o') |
---|
157 | |
---|
158 | def _build_sc(): |
---|
159 | # three planes of 9 dots for x at -1, 0 and 1 |
---|
160 | x, y, z = ( |
---|
161 | [-1]*9 + [0]*9 + [1]*9, |
---|
162 | ([-1]*3 + [0]*3 + [1]*3)*3, |
---|
163 | [-1, 0, 1]*9, |
---|
164 | ) |
---|
165 | atoms = list(zip(x, y, z)) |
---|
166 | #print(list(enumerate(atoms))) |
---|
167 | # Pull the dot at (0, 0, 1) to the front of the list |
---|
168 | # It will be highlighted in the view |
---|
169 | index = 14 |
---|
170 | highlight = atoms[index] |
---|
171 | del atoms[index] |
---|
172 | atoms.insert(0, highlight) |
---|
173 | return atoms |
---|
174 | |
---|
175 | def draw_box(axes, size, view): |
---|
176 | """Draw a wireframe box at a particular view.""" |
---|
177 | a, b, c = size |
---|
178 | x = a*np.array([+1, -1, +1, -1, +1, -1, +1, -1]) |
---|
179 | y = b*np.array([+1, +1, -1, -1, +1, +1, -1, -1]) |
---|
180 | z = c*np.array([+1, +1, +1, +1, -1, -1, -1, -1]) |
---|
181 | x, y, z = transform_xyz(view, None, x, y, z) |
---|
182 | def _draw(i, j): |
---|
183 | axes.plot([x[i], x[j]], [y[i], y[j]], [z[i], z[j]], color='black') |
---|
184 | _draw(0, 1) |
---|
185 | _draw(0, 2) |
---|
186 | _draw(0, 3) |
---|
187 | _draw(7, 4) |
---|
188 | _draw(7, 5) |
---|
189 | _draw(7, 6) |
---|
190 | |
---|
191 | def draw_parallelepiped(axes, size, view, jitter, steps=None, |
---|
192 | color=(0.6, 1.0, 0.6), alpha=1): |
---|
193 | """Draw a parallelepiped surface, with view and jitter.""" |
---|
194 | # pylint: disable=unused-argument |
---|
195 | a, b, c = size |
---|
196 | x = a*np.array([+1, -1, +1, -1, +1, -1, +1, -1]) |
---|
197 | y = b*np.array([+1, +1, -1, -1, +1, +1, -1, -1]) |
---|
198 | z = c*np.array([+1, +1, +1, +1, -1, -1, -1, -1]) |
---|
199 | tri = np.array([ |
---|
200 | # counter clockwise triangles |
---|
201 | # z: up/down, x: right/left, y: front/back |
---|
202 | [0, 1, 2], [3, 2, 1], # top face |
---|
203 | [6, 5, 4], [5, 6, 7], # bottom face |
---|
204 | [0, 2, 6], [6, 4, 0], # right face |
---|
205 | [1, 5, 7], [7, 3, 1], # left face |
---|
206 | [2, 3, 6], [7, 6, 3], # front face |
---|
207 | [4, 1, 0], [5, 1, 4], # back face |
---|
208 | ]) |
---|
209 | |
---|
210 | x, y, z = transform_xyz(view, jitter, x, y, z) |
---|
211 | axes.plot_trisurf(x, y, triangles=tri, Z=z, color=color, alpha=alpha, |
---|
212 | linewidth=0) |
---|
213 | |
---|
214 | # Colour the c+ face of the box. |
---|
215 | # Since I can't control face color, instead draw a thin box situated just |
---|
216 | # in front of the "c+" face. Use the c face so that rotations about psi |
---|
217 | # rotate that face. |
---|
218 | if 0: # pylint: disable=using-constant-test |
---|
219 | color = (1, 0.6, 0.6) # pink |
---|
220 | x = a*np.array([+1, -1, +1, -1, +1, -1, +1, -1]) |
---|
221 | y = b*np.array([+1, +1, -1, -1, +1, +1, -1, -1]) |
---|
222 | z = c*np.array([+1, +1, +1, +1, -1, -1, -1, -1]) |
---|
223 | x, y, z = transform_xyz(view, jitter, x, y, abs(z)+0.001) |
---|
224 | axes.plot_trisurf(x, y, triangles=tri, Z=z, color=color, alpha=alpha) |
---|
225 | |
---|
226 | draw_labels(axes, view, jitter, [ |
---|
227 | ('c+', [+0, +0, +c], [+1, +0, +0]), |
---|
228 | ('c-', [+0, +0, -c], [+0, +0, -1]), |
---|
229 | ('a+', [+a, +0, +0], [+0, +0, +1]), |
---|
230 | ('a-', [-a, +0, +0], [+0, +0, -1]), |
---|
231 | ('b+', [+0, +b, +0], [-1, +0, +0]), |
---|
232 | ('b-', [+0, -b, +0], [-1, +0, +0]), |
---|
233 | ]) |
---|
234 | |
---|
235 | def draw_sphere(axes, radius=1.0, steps=25, |
---|
236 | center=(0, 0, 0), color='w', alpha=1.): |
---|
237 | """Draw a sphere""" |
---|
238 | u = np.linspace(0, 2 * pi, steps) |
---|
239 | v = np.linspace(0, pi, steps) |
---|
240 | |
---|
241 | x = radius * np.outer(cos(u), sin(v)) + center[0] |
---|
242 | y = radius * np.outer(sin(u), sin(v)) + center[1] |
---|
243 | z = radius * np.outer(np.ones(np.size(u)), cos(v)) + center[2] |
---|
244 | axes.plot_surface(x, y, z, color=color, alpha=alpha) |
---|
245 | #axes.plot_wireframe(x, y, z) |
---|
246 | |
---|
247 | def draw_axes(axes, origin=(-1, -1, -1), length=(2, 2, 2)): |
---|
248 | """Draw wireframe axes lines, with given origin and length""" |
---|
249 | x, y, z = origin |
---|
250 | dx, dy, dz = length |
---|
251 | axes.plot([x, x+dx], [y, y], [z, z], color='black') |
---|
252 | axes.plot([x, x], [y, y+dy], [z, z], color='black') |
---|
253 | axes.plot([x, x], [y, y], [z, z+dz], color='black') |
---|
254 | |
---|
255 | def draw_person_on_sphere(axes, view, height=0.5, radius=1.0): |
---|
256 | """ |
---|
257 | Draw a person on the surface of a sphere. |
---|
258 | |
---|
259 | *view* indicates (latitude, longitude, orientation) |
---|
260 | """ |
---|
261 | limb_offset = height * 0.05 |
---|
262 | head_radius = height * 0.10 |
---|
263 | head_height = height - head_radius |
---|
264 | neck_length = head_radius * 0.50 |
---|
265 | shoulder_height = height - 2*head_radius - neck_length |
---|
266 | torso_length = shoulder_height * 0.55 |
---|
267 | torso_radius = torso_length * 0.30 |
---|
268 | leg_length = shoulder_height - torso_length |
---|
269 | arm_length = torso_length * 0.90 |
---|
270 | |
---|
271 | def _draw_part(y, z): |
---|
272 | x = np.zeros_like(y) |
---|
273 | xp, yp, zp = transform_xyz(view, None, x, y, z + radius) |
---|
274 | axes.plot(xp, yp, zp, color='k') |
---|
275 | |
---|
276 | # circle for head |
---|
277 | u = np.linspace(0, 2 * pi, 40) |
---|
278 | y = head_radius * cos(u) |
---|
279 | z = head_radius * sin(u) + head_height |
---|
280 | _draw_part(y, z) |
---|
281 | |
---|
282 | # rectangle for body |
---|
283 | y = np.array([-torso_radius, torso_radius, torso_radius, -torso_radius, -torso_radius]) |
---|
284 | z = np.array([0., 0, torso_length, torso_length, 0]) + leg_length |
---|
285 | _draw_part(y, z) |
---|
286 | |
---|
287 | # arms |
---|
288 | y = np.array([-torso_radius - limb_offset, -torso_radius - limb_offset, -torso_radius]) |
---|
289 | z = np.array([shoulder_height - arm_length, shoulder_height, shoulder_height]) |
---|
290 | _draw_part(y, z) |
---|
291 | _draw_part(-y, z) # pylint: disable=invalid-unary-operand-type |
---|
292 | |
---|
293 | # legs |
---|
294 | y = np.array([-torso_radius + limb_offset, -torso_radius + limb_offset]) |
---|
295 | z = np.array([0, leg_length]) |
---|
296 | _draw_part(y, z) |
---|
297 | _draw_part(-y, z) # pylint: disable=invalid-unary-operand-type |
---|
298 | |
---|
299 | limits = [-radius-height, radius+height] |
---|
300 | axes.set_xlim(limits) |
---|
301 | axes.set_ylim(limits) |
---|
302 | axes.set_zlim(limits) |
---|
303 | axes.set_axis_off() |
---|
304 | |
---|
305 | def draw_jitter(axes, view, jitter, dist='gaussian', |
---|
306 | size=(0.1, 0.4, 1.0), |
---|
307 | draw_shape=draw_parallelepiped, |
---|
308 | projection='equirectangular', |
---|
309 | alpha=0.8, |
---|
310 | views=None): |
---|
311 | """ |
---|
312 | Represent jitter as a set of shapes at different orientations. |
---|
313 | """ |
---|
314 | project, project_weight = get_projection(projection) |
---|
315 | |
---|
316 | # set max diagonal to 0.95 |
---|
317 | scale = 0.95/sqrt(sum(v**2 for v in size)) |
---|
318 | size = tuple(scale*v for v in size) |
---|
319 | |
---|
320 | dtheta, dphi, dpsi = jitter |
---|
321 | base = {'gaussian':3, 'rectangle':sqrt(3), 'uniform':1}[dist] |
---|
322 | def _steps(delta): |
---|
323 | if views is None: |
---|
324 | n = max(3, min(25, 2*int(base*delta/5))) |
---|
325 | else: |
---|
326 | n = views |
---|
327 | return base*delta*np.linspace(-1, 1, n) if delta > 0 else [0.] |
---|
328 | for theta in _steps(dtheta): |
---|
329 | for phi in _steps(dphi): |
---|
330 | for psi in _steps(dpsi): |
---|
331 | w = project_weight(theta, phi, 1.0, 1.0) |
---|
332 | if w > 0: |
---|
333 | dview = project(theta, phi, psi) |
---|
334 | draw_shape(axes, size, view, dview, alpha=alpha) |
---|
335 | for v in 'xyz': |
---|
336 | a, b, c = size |
---|
337 | lim = sqrt(a**2 + b**2 + c**2) |
---|
338 | getattr(axes, 'set_'+v+'lim')([-lim, lim]) |
---|
339 | #getattr(axes, v+'axis').label.set_text(v) |
---|
340 | |
---|
341 | PROJECTIONS = [ |
---|
342 | # in order of PROJECTION number; do not change without updating the |
---|
343 | # constants in kernel_iq.c |
---|
344 | 'equirectangular', 'sinusoidal', 'guyou', 'azimuthal_equidistance', |
---|
345 | 'azimuthal_equal_area', |
---|
346 | ] |
---|
347 | def get_projection(projection): |
---|
348 | |
---|
349 | """ |
---|
350 | jitter projections |
---|
351 | <https://en.wikipedia.org/wiki/List_of_map_projections> |
---|
352 | |
---|
353 | equirectangular (standard latitude-longitude mesh) |
---|
354 | <https://en.wikipedia.org/wiki/Equirectangular_projection> |
---|
355 | Allows free movement in phi (around the equator), but theta is |
---|
356 | limited to +/- 90, and points are cos-weighted. Jitter in phi is |
---|
357 | uniform in weight along a line of latitude. With small theta and |
---|
358 | phi ranging over +/- 180 this forms a wobbling disk. With small |
---|
359 | phi and theta ranging over +/- 90 this forms a wedge like a slice |
---|
360 | of an orange. |
---|
361 | azimuthal_equidistance (Postel) |
---|
362 | <https://en.wikipedia.org/wiki/Azimuthal_equidistant_projection> |
---|
363 | Preserves distance from center, and so is an excellent map for |
---|
364 | representing a bivariate gaussian on the surface. Theta and phi |
---|
365 | operate identically, cutting wegdes from the antipode of the viewing |
---|
366 | angle. This unfortunately does not allow free movement in either |
---|
367 | theta or phi since the orthogonal wobble decreases to 0 as the body |
---|
368 | rotates through 180 degrees. |
---|
369 | sinusoidal (Sanson-Flamsteed, Mercator equal-area) |
---|
370 | <https://en.wikipedia.org/wiki/Sinusoidal_projection> |
---|
371 | Preserves arc length with latitude, giving bad behaviour at |
---|
372 | theta near +/- 90. Theta and phi operate somewhat differently, |
---|
373 | so a system with a-b-c dtheta-dphi-dpsi will not give the same |
---|
374 | value as one with b-a-c dphi-dtheta-dpsi, as would be the case |
---|
375 | for azimuthal equidistance. Free movement using theta or phi |
---|
376 | uniform over +/- 180 will work, but not as well as equirectangular |
---|
377 | phi, with theta being slightly worse. Computationally it is much |
---|
378 | cheaper for wide theta-phi meshes since it excludes points which |
---|
379 | lie outside the sinusoid near theta +/- 90 rather than packing |
---|
380 | them close together as in equirectangle. Note that the poles |
---|
381 | will be slightly overweighted for theta > 90 with the circle |
---|
382 | from theta at 90+dt winding backwards around the pole, overlapping |
---|
383 | the circle from theta at 90-dt. |
---|
384 | Guyou (hemisphere-in-a-square) **not weighted** |
---|
385 | <https://en.wikipedia.org/wiki/Guyou_hemisphere-in-a-square_projection> |
---|
386 | With tiling, allows rotation in phi or theta through +/- 180, with |
---|
387 | uniform spacing. Both theta and phi allow free rotation, with wobble |
---|
388 | in the orthogonal direction reasonably well behaved (though not as |
---|
389 | good as equirectangular phi). The forward/reverse transformations |
---|
390 | relies on elliptic integrals that are somewhat expensive, so the |
---|
391 | behaviour has to be very good to justify the cost and complexity. |
---|
392 | The weighting function for each point has not yet been computed. |
---|
393 | Note: run the module *guyou.py* directly and it will show the forward |
---|
394 | and reverse mappings. |
---|
395 | azimuthal_equal_area **incomplete** |
---|
396 | <https://en.wikipedia.org/wiki/Lambert_azimuthal_equal-area_projection> |
---|
397 | Preserves the relative density of the surface patches. Not that |
---|
398 | useful and not completely implemented |
---|
399 | Gauss-Kreuger **not implemented** |
---|
400 | <https://en.wikipedia.org/wiki/Transverse_Mercator_projection#Ellipsoidal_transverse_Mercator> |
---|
401 | Should allow free movement in theta, but phi is distorted. |
---|
402 | """ |
---|
403 | # pylint: disable=unused-argument |
---|
404 | # TODO: try Kent distribution instead of a gaussian warped by projection |
---|
405 | |
---|
406 | if projection == 'equirectangular': #define PROJECTION 1 |
---|
407 | def _project(theta_i, phi_j, psi): |
---|
408 | latitude, longitude = theta_i, phi_j |
---|
409 | return latitude, longitude, psi, 'xyz' |
---|
410 | #return Rx(phi_j)*Ry(theta_i) |
---|
411 | def _weight(theta_i, phi_j, w_i, w_j): |
---|
412 | return w_i*w_j*abs(cos(radians(theta_i))) |
---|
413 | elif projection == 'sinusoidal': #define PROJECTION 2 |
---|
414 | def _project(theta_i, phi_j, psi): |
---|
415 | latitude = theta_i |
---|
416 | scale = cos(radians(latitude)) |
---|
417 | longitude = phi_j/scale if abs(phi_j) < abs(scale)*180 else 0 |
---|
418 | #print("(%+7.2f, %+7.2f) => (%+7.2f, %+7.2f)"%(theta_i, phi_j, latitude, longitude)) |
---|
419 | return latitude, longitude, psi, 'xyz' |
---|
420 | #return Rx(longitude)*Ry(latitude) |
---|
421 | def _project(theta_i, phi_j, w_i, w_j): |
---|
422 | latitude = theta_i |
---|
423 | scale = cos(radians(latitude)) |
---|
424 | active = 1 if abs(phi_j) < abs(scale)*180 else 0 |
---|
425 | return active*w_i*w_j |
---|
426 | elif projection == 'guyou': #define PROJECTION 3 (eventually?) |
---|
427 | def _project(theta_i, phi_j, psi): |
---|
428 | from .guyou import guyou_invert |
---|
429 | #latitude, longitude = guyou_invert([theta_i], [phi_j]) |
---|
430 | longitude, latitude = guyou_invert([phi_j], [theta_i]) |
---|
431 | return latitude, longitude, psi, 'xyz' |
---|
432 | #return Rx(longitude[0])*Ry(latitude[0]) |
---|
433 | def _weight(theta_i, phi_j, w_i, w_j): |
---|
434 | return w_i*w_j |
---|
435 | elif projection == 'azimuthal_equidistance': |
---|
436 | # Note that calculates angles for Rz Ry rather than Rx Ry |
---|
437 | def _project(theta_i, phi_j, psi): |
---|
438 | latitude = sqrt(theta_i**2 + phi_j**2) |
---|
439 | longitude = degrees(arctan2(phi_j, theta_i)) |
---|
440 | #print("(%+7.2f, %+7.2f) => (%+7.2f, %+7.2f)"%(theta_i, phi_j, latitude, longitude)) |
---|
441 | return latitude, longitude, psi-longitude, 'zyz' |
---|
442 | #R = Rz(longitude)*Ry(latitude)*Rz(psi) |
---|
443 | #return R_to_xyz(R) |
---|
444 | #return Rz(longitude)*Ry(latitude) |
---|
445 | def _weight(theta_i, phi_j, w_i, w_j): |
---|
446 | # Weighting for each point comes from the integral: |
---|
447 | # \int\int I(q, lat, log) sin(lat) dlat dlog |
---|
448 | # We are doing a conformal mapping from disk to sphere, so we need |
---|
449 | # a change of variables g(theta, phi) -> (lat, long): |
---|
450 | # lat, long = sqrt(theta^2 + phi^2), arctan(phi/theta) |
---|
451 | # giving: |
---|
452 | # dtheta dphi = det(J) dlat dlong |
---|
453 | # where J is the jacobian from the partials of g. Using |
---|
454 | # R = sqrt(theta^2 + phi^2), |
---|
455 | # then |
---|
456 | # J = [[x/R, Y/R], -y/R^2, x/R^2]] |
---|
457 | # and |
---|
458 | # det(J) = 1/R |
---|
459 | # with the final integral being: |
---|
460 | # \int\int I(q, theta, phi) sin(R)/R dtheta dphi |
---|
461 | # |
---|
462 | # This does approximately the right thing, decreasing the weight |
---|
463 | # of each point as you go farther out on the disk, but it hasn't |
---|
464 | # yet been checked against the 1D integral results. Prior |
---|
465 | # to declaring this "good enough" and checking that integrals |
---|
466 | # work in practice, we will examine alternative mappings. |
---|
467 | # |
---|
468 | # The issue is that the mapping does not support the case of free |
---|
469 | # rotation about a single axis correctly, with a small deviation |
---|
470 | # in the orthogonal axis independent of the first axis. Like the |
---|
471 | # usual polar coordiates integration, the integrated sections |
---|
472 | # form wedges, though at least in this case the wedge cuts through |
---|
473 | # the entire sphere, and treats theta and phi identically. |
---|
474 | latitude = sqrt(theta_i**2 + phi_j**2) |
---|
475 | weight = sin(radians(latitude))/latitude if latitude != 0 else 1 |
---|
476 | return weight*w_i*w_j if latitude < 180 else 0 |
---|
477 | elif projection == 'azimuthal_equal_area': |
---|
478 | # Note that calculates angles for Rz Ry rather than Rx Ry |
---|
479 | def _project(theta_i, phi_j, psi): |
---|
480 | radius = min(1, sqrt(theta_i**2 + phi_j**2)/180) |
---|
481 | latitude = 180-degrees(2*arccos(radius)) |
---|
482 | longitude = degrees(arctan2(phi_j, theta_i)) |
---|
483 | #print("(%+7.2f, %+7.2f) => (%+7.2f, %+7.2f)"%(theta_i, phi_j, latitude, longitude)) |
---|
484 | return latitude, longitude, psi, 'zyz' |
---|
485 | #R = Rz(longitude)*Ry(latitude)*Rz(psi) |
---|
486 | #return R_to_xyz(R) |
---|
487 | #return Rz(longitude)*Ry(latitude) |
---|
488 | def _weight(theta_i, phi_j, w_i, w_j): |
---|
489 | latitude = sqrt(theta_i**2 + phi_j**2) |
---|
490 | weight = sin(radians(latitude))/latitude if latitude != 0 else 1 |
---|
491 | return weight*w_i*w_j if latitude < 180 else 0 |
---|
492 | else: |
---|
493 | raise ValueError("unknown projection %r"%projection) |
---|
494 | |
---|
495 | return _project, _weight |
---|
496 | |
---|
497 | def R_to_xyz(R): |
---|
498 | """ |
---|
499 | Return phi, theta, psi Tait-Bryan angles corresponding to the given rotation matrix. |
---|
500 | |
---|
501 | Extracting Euler Angles from a Rotation Matrix |
---|
502 | Mike Day, Insomniac Games |
---|
503 | https://d3cw3dd2w32x2b.cloudfront.net/wp-content/uploads/2012/07/euler-angles1.pdf |
---|
504 | Based on: Shoemakeâs "Euler Angle Conversion", Graphics Gems IV, pp. 222-229 |
---|
505 | """ |
---|
506 | phi = arctan2(R[1, 2], R[2, 2]) |
---|
507 | theta = arctan2(-R[0, 2], sqrt(R[0, 0]**2 + R[0, 1]**2)) |
---|
508 | psi = arctan2(R[0, 1], R[0, 0]) |
---|
509 | return degrees(phi), degrees(theta), degrees(psi) |
---|
510 | |
---|
511 | def draw_mesh(axes, view, jitter, radius=1.2, n=11, dist='gaussian', |
---|
512 | projection='equirectangular'): |
---|
513 | """ |
---|
514 | Draw the dispersion mesh showing the theta-phi orientations at which |
---|
515 | the model will be evaluated. |
---|
516 | """ |
---|
517 | |
---|
518 | _project, _weight = get_projection(projection) |
---|
519 | def _rotate(theta, phi, z): |
---|
520 | dview = _project(theta, phi, 0.) |
---|
521 | if dview[3] == 'zyz': |
---|
522 | return Rz(dview[1])*Ry(dview[0])*z |
---|
523 | else: # dview[3] == 'xyz': |
---|
524 | return Rx(dview[1])*Ry(dview[0])*z |
---|
525 | |
---|
526 | |
---|
527 | dist_x = np.linspace(-1, 1, n) |
---|
528 | weights = np.ones_like(dist_x) |
---|
529 | if dist == 'gaussian': |
---|
530 | dist_x *= 3 |
---|
531 | weights = exp(-0.5*dist_x**2) |
---|
532 | elif dist == 'rectangle': |
---|
533 | # Note: uses sasmodels ridiculous definition of rectangle width |
---|
534 | dist_x *= sqrt(3) |
---|
535 | elif dist == 'uniform': |
---|
536 | pass |
---|
537 | else: |
---|
538 | raise ValueError("expected dist to be gaussian, rectangle or uniform") |
---|
539 | |
---|
540 | # mesh in theta, phi formed by rotating z |
---|
541 | dtheta, dphi, dpsi = jitter # pylint: disable=unused-variable |
---|
542 | z = np.matrix([[0], [0], [radius]]) |
---|
543 | points = np.hstack([_rotate(theta_i, phi_j, z) |
---|
544 | for theta_i in dtheta*dist_x |
---|
545 | for phi_j in dphi*dist_x]) |
---|
546 | dist_w = np.array([_weight(theta_i, phi_j, w_i, w_j) |
---|
547 | for w_i, theta_i in zip(weights, dtheta*dist_x) |
---|
548 | for w_j, phi_j in zip(weights, dphi*dist_x)]) |
---|
549 | #print(max(dist_w), min(dist_w), min(dist_w[dist_w > 0])) |
---|
550 | points = points[:, dist_w > 0] |
---|
551 | dist_w = dist_w[dist_w > 0] |
---|
552 | dist_w /= max(dist_w) |
---|
553 | |
---|
554 | # rotate relative to beam |
---|
555 | points = orient_relative_to_beam(view, points) |
---|
556 | |
---|
557 | x, y, z = [np.array(v).flatten() for v in points] |
---|
558 | #plt.figure(2); plt.clf(); plt.hist(z, bins=np.linspace(-1, 1, 51)) |
---|
559 | axes.scatter(x, y, z, c=dist_w, marker='o', vmin=0., vmax=1.) |
---|
560 | |
---|
561 | def draw_labels(axes, view, jitter, text): |
---|
562 | """ |
---|
563 | Draw text at a particular location. |
---|
564 | """ |
---|
565 | labels, locations, orientations = zip(*text) |
---|
566 | px, py, pz = zip(*locations) |
---|
567 | dx, dy, dz = zip(*orientations) |
---|
568 | |
---|
569 | px, py, pz = transform_xyz(view, jitter, px, py, pz) |
---|
570 | dx, dy, dz = transform_xyz(view, jitter, dx, dy, dz) |
---|
571 | |
---|
572 | # TODO: zdir for labels is broken, and labels aren't appearing. |
---|
573 | for label, p, zdir in zip(labels, zip(px, py, pz), zip(dx, dy, dz)): |
---|
574 | zdir = np.asarray(zdir).flatten() |
---|
575 | axes.text(p[0], p[1], p[2], label, zdir=zdir) |
---|
576 | |
---|
577 | # Definition of rotation matrices comes from wikipedia: |
---|
578 | # https://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations |
---|
579 | def Rx(angle): |
---|
580 | """Construct a matrix to rotate points about *x* by *angle* degrees.""" |
---|
581 | angle = radians(angle) |
---|
582 | rot = [[1, 0, 0], |
---|
583 | [0, +cos(angle), -sin(angle)], |
---|
584 | [0, +sin(angle), +cos(angle)]] |
---|
585 | return np.matrix(rot) |
---|
586 | |
---|
587 | def Ry(angle): |
---|
588 | """Construct a matrix to rotate points about *y* by *angle* degrees.""" |
---|
589 | angle = radians(angle) |
---|
590 | rot = [[+cos(angle), 0, +sin(angle)], |
---|
591 | [0, 1, 0], |
---|
592 | [-sin(angle), 0, +cos(angle)]] |
---|
593 | return np.matrix(rot) |
---|
594 | |
---|
595 | def Rz(angle): |
---|
596 | """Construct a matrix to rotate points about *z* by *angle* degrees.""" |
---|
597 | angle = radians(angle) |
---|
598 | rot = [[+cos(angle), -sin(angle), 0], |
---|
599 | [+sin(angle), +cos(angle), 0], |
---|
600 | [0, 0, 1]] |
---|
601 | return np.matrix(rot) |
---|
602 | |
---|
603 | def transform_xyz(view, jitter, x, y, z): |
---|
604 | """ |
---|
605 | Send a set of (x,y,z) points through the jitter and view transforms. |
---|
606 | """ |
---|
607 | x, y, z = [np.asarray(v) for v in (x, y, z)] |
---|
608 | shape = x.shape |
---|
609 | points = np.matrix([x.flatten(), y.flatten(), z.flatten()]) |
---|
610 | points = apply_jitter(jitter, points) |
---|
611 | points = orient_relative_to_beam(view, points) |
---|
612 | x, y, z = [np.array(v).reshape(shape) for v in points] |
---|
613 | return x, y, z |
---|
614 | |
---|
615 | def apply_jitter(jitter, points): |
---|
616 | """ |
---|
617 | Apply the jitter transform to a set of points. |
---|
618 | |
---|
619 | Points are stored in a 3 x n numpy matrix, not a numpy array or tuple. |
---|
620 | """ |
---|
621 | if jitter is None: |
---|
622 | return points |
---|
623 | # Hack to deal with the fact that azimuthal_equidistance uses euler angles |
---|
624 | if len(jitter) == 4: |
---|
625 | dtheta, dphi, dpsi, _ = jitter |
---|
626 | points = Rz(dphi)*Ry(dtheta)*Rz(dpsi)*points |
---|
627 | else: |
---|
628 | dtheta, dphi, dpsi = jitter |
---|
629 | points = Rx(dphi)*Ry(dtheta)*Rz(dpsi)*points |
---|
630 | return points |
---|
631 | |
---|
632 | def orient_relative_to_beam(view, points): |
---|
633 | """ |
---|
634 | Apply the view transform to a set of points. |
---|
635 | |
---|
636 | Points are stored in a 3 x n numpy matrix, not a numpy array or tuple. |
---|
637 | """ |
---|
638 | theta, phi, psi = view |
---|
639 | points = Rz(phi)*Ry(theta)*Rz(psi)*points # viewing angle |
---|
640 | #points = Rz(psi)*Ry(pi/2-theta)*Rz(phi)*points # 1-D integration angles |
---|
641 | #points = Rx(phi)*Ry(theta)*Rz(psi)*points # angular dispersion angle |
---|
642 | return points |
---|
643 | |
---|
644 | def orient_relative_to_beam_quaternion(view, points): |
---|
645 | """ |
---|
646 | Apply the view transform to a set of points. |
---|
647 | |
---|
648 | Points are stored in a 3 x n numpy matrix, not a numpy array or tuple. |
---|
649 | |
---|
650 | This variant uses quaternions rather than rotation matrices for the |
---|
651 | computation. It works but it is not used because it doesn't solve |
---|
652 | any problems. The challenge of mapping theta/phi/psi to SO(3) does |
---|
653 | not disappear by calculating the transform differently. |
---|
654 | """ |
---|
655 | theta, phi, psi = view |
---|
656 | x, y, z = [1, 0, 0], [0, 1, 0], [0, 0, 1] |
---|
657 | q = Quaternion(1, [0, 0, 0]) |
---|
658 | ## Compose a rotation about the three axes by rotating |
---|
659 | ## the unit vectors before applying the rotation. |
---|
660 | #q = Quaternion.from_angle_axis(theta, q.rot(x)) * q |
---|
661 | #q = Quaternion.from_angle_axis(phi, q.rot(y)) * q |
---|
662 | #q = Quaternion.from_angle_axis(psi, q.rot(z)) * q |
---|
663 | ## The above turns out to be equivalent to reversing |
---|
664 | ## the order of application, so ignore it and use below. |
---|
665 | q = q * Quaternion.from_angle_axis(theta, x) |
---|
666 | q = q * Quaternion.from_angle_axis(phi, y) |
---|
667 | q = q * Quaternion.from_angle_axis(psi, z) |
---|
668 | ## Reverse the order by post-multiply rather than pre-multiply |
---|
669 | #q = Quaternion.from_angle_axis(theta, x) * q |
---|
670 | #q = Quaternion.from_angle_axis(phi, y) * q |
---|
671 | #q = Quaternion.from_angle_axis(psi, z) * q |
---|
672 | #print("axes psi", q.rot(np.matrix([x, y, z]).T)) |
---|
673 | return q.rot(points) |
---|
674 | #orient_relative_to_beam = orient_relative_to_beam_quaternion |
---|
675 | |
---|
676 | # === Quaterion class definition === BEGIN |
---|
677 | # Simple stand-alone quaternion class |
---|
678 | |
---|
679 | # Note: this code works but isn't unused since quaternions didn't solve the |
---|
680 | # representation problem. Leave it here in case we want to revisit this later. |
---|
681 | |
---|
682 | #import numpy as np |
---|
683 | class Quaternion(object): |
---|
684 | r""" |
---|
685 | Quaternion(w, r) = w + ir[0] + jr[1] + kr[2] |
---|
686 | |
---|
687 | Quaternion.from_angle_axis(theta, r) for a rotation of angle theta about |
---|
688 | an axis oriented toward the direction r. This defines a unit quaternion, |
---|
689 | normalizing $r$ to the unit vector $\hat r$, and setting quaternion |
---|
690 | $Q = \cos \theta + \sin \theta \hat r$ |
---|
691 | |
---|
692 | Quaternion objects can be multiplied, which applies a rotation about the |
---|
693 | given axis, allowing composition of rotations without risk of gimbal lock. |
---|
694 | The resulting quaternion is applied to a set of points using *Q.rot(v)*. |
---|
695 | """ |
---|
696 | def __init__(self, w, r): |
---|
697 | self.w = w |
---|
698 | self.r = np.asarray(r, dtype='d') |
---|
699 | |
---|
700 | @staticmethod |
---|
701 | def from_angle_axis(theta, r): |
---|
702 | """Build quaternion as rotation theta about axis r""" |
---|
703 | theta = np.radians(theta)/2 |
---|
704 | r = np.asarray(r) |
---|
705 | w = np.cos(theta) |
---|
706 | r = np.sin(theta)*r/np.dot(r, r) |
---|
707 | return Quaternion(w, r) |
---|
708 | |
---|
709 | def __mul__(self, other): |
---|
710 | """Multiply quaterions""" |
---|
711 | if isinstance(other, Quaternion): |
---|
712 | w = self.w*other.w - np.dot(self.r, other.r) |
---|
713 | r = self.w*other.r + other.w*self.r + np.cross(self.r, other.r) |
---|
714 | return Quaternion(w, r) |
---|
715 | raise NotImplementedError("Quaternion * non-quaternion not implemented") |
---|
716 | |
---|
717 | def rot(self, v): |
---|
718 | """Transform point *v* by quaternion""" |
---|
719 | v = np.asarray(v).T |
---|
720 | use_transpose = (v.shape[-1] != 3) |
---|
721 | if use_transpose: |
---|
722 | v = v.T |
---|
723 | v = v + np.cross(2*self.r, np.cross(self.r, v) + self.w*v) |
---|
724 | #v = v + 2*self.w*np.cross(self.r, v) + np.cross(2*self.r, np.cross(self.r, v)) |
---|
725 | if use_transpose: |
---|
726 | v = v.T |
---|
727 | return v.T |
---|
728 | |
---|
729 | def conj(self): |
---|
730 | """Conjugate quaternion""" |
---|
731 | return Quaternion(self.w, -self.r) |
---|
732 | |
---|
733 | def inv(self): |
---|
734 | """Inverse quaternion""" |
---|
735 | return self.conj()/self.norm()**2 |
---|
736 | |
---|
737 | def norm(self): |
---|
738 | """Quaternion length""" |
---|
739 | return np.sqrt(self.w**2 + np.sum(self.r**2)) |
---|
740 | |
---|
741 | def __str__(self): |
---|
742 | return "%g%+gi%+gj%+gk"%(self.w, self.r[0], self.r[1], self.r[2]) |
---|
743 | |
---|
744 | def test_qrot(): |
---|
745 | """Quaternion checks""" |
---|
746 | # Define rotation of 60 degrees around an axis in y-z that is 60 degrees |
---|
747 | # from y. The rotation axis is determined by rotating the point [0, 1, 0] |
---|
748 | # about x. |
---|
749 | ax = Quaternion.from_angle_axis(60, [1, 0, 0]).rot([0, 1, 0]) |
---|
750 | q = Quaternion.from_angle_axis(60, ax) |
---|
751 | # Set the point to be rotated, and its expected rotated position. |
---|
752 | p = [1, -1, 2] |
---|
753 | target = [(10+4*np.sqrt(3))/8, (1+2*np.sqrt(3))/8, (14-3*np.sqrt(3))/8] |
---|
754 | #print(q, q.rot(p) - target) |
---|
755 | assert max(abs(q.rot(p) - target)) < 1e-14 |
---|
756 | #test_qrot() |
---|
757 | #import sys; sys.exit() |
---|
758 | # === Quaterion class definition === END |
---|
759 | |
---|
760 | # translate between number of dimension of dispersity and the number of |
---|
761 | # points along each dimension. |
---|
762 | PD_N_TABLE = { |
---|
763 | (0, 0, 0): (0, 0, 0), # 0 |
---|
764 | (1, 0, 0): (100, 0, 0), # 100 |
---|
765 | (0, 1, 0): (0, 100, 0), |
---|
766 | (0, 0, 1): (0, 0, 100), |
---|
767 | (1, 1, 0): (30, 30, 0), # 900 |
---|
768 | (1, 0, 1): (30, 0, 30), |
---|
769 | (0, 1, 1): (0, 30, 30), |
---|
770 | (1, 1, 1): (15, 15, 15), # 3375 |
---|
771 | } |
---|
772 | |
---|
773 | def clipped_range(data, portion=1.0, mode='central'): |
---|
774 | """ |
---|
775 | Determine range from data. |
---|
776 | |
---|
777 | If *portion* is 1, use full range, otherwise use the center of the range |
---|
778 | or the top of the range, depending on whether *mode* is 'central' or 'top'. |
---|
779 | """ |
---|
780 | if portion < 1.0: |
---|
781 | if mode == 'central': |
---|
782 | data = np.sort(data.flatten()) |
---|
783 | offset = int(portion*len(data)/2 + 0.5) |
---|
784 | return data[offset], data[-offset] |
---|
785 | if mode == 'top': |
---|
786 | data = np.sort(data.flatten()) |
---|
787 | offset = int(portion*len(data) + 0.5) |
---|
788 | return data[offset], data[-1] |
---|
789 | # Default: full range |
---|
790 | return data.min(), data.max() |
---|
791 | |
---|
792 | def draw_scattering(calculator, axes, view, jitter, dist='gaussian'): |
---|
793 | """ |
---|
794 | Plot the scattering for the particular view. |
---|
795 | |
---|
796 | *calculator* is returned from :func:`build_model`. *axes* are the 3D axes |
---|
797 | on which the data will be plotted. *view* and *jitter* are the current |
---|
798 | orientation and orientation dispersity. *dist* is one of the sasmodels |
---|
799 | weight distributions. |
---|
800 | """ |
---|
801 | if dist == 'uniform': # uniform is not yet in this branch |
---|
802 | dist, scale = 'rectangle', 1/sqrt(3) |
---|
803 | else: |
---|
804 | scale = 1 |
---|
805 | |
---|
806 | # add the orientation parameters to the model parameters |
---|
807 | theta, phi, psi = view |
---|
808 | theta_pd, phi_pd, psi_pd = [scale*v for v in jitter] |
---|
809 | theta_pd_n, phi_pd_n, psi_pd_n = PD_N_TABLE[(theta_pd > 0, phi_pd > 0, psi_pd > 0)] |
---|
810 | ## increase pd_n for testing jitter integration rather than simple viz |
---|
811 | #theta_pd_n, phi_pd_n, psi_pd_n = [5*v for v in (theta_pd_n, phi_pd_n, psi_pd_n)] |
---|
812 | |
---|
813 | pars = dict( |
---|
814 | theta=theta, theta_pd=theta_pd, theta_pd_type=dist, theta_pd_n=theta_pd_n, |
---|
815 | phi=phi, phi_pd=phi_pd, phi_pd_type=dist, phi_pd_n=phi_pd_n, |
---|
816 | psi=psi, psi_pd=psi_pd, psi_pd_type=dist, psi_pd_n=psi_pd_n, |
---|
817 | ) |
---|
818 | pars.update(calculator.pars) |
---|
819 | |
---|
820 | # compute the pattern |
---|
821 | qx, qy = calculator.qxqy |
---|
822 | Iqxy = calculator(**pars).reshape(len(qx), len(qy)) |
---|
823 | |
---|
824 | # scale it and draw it |
---|
825 | Iqxy = log(Iqxy) |
---|
826 | if calculator.limits: |
---|
827 | # use limits from orientation (0,0,0) |
---|
828 | vmin, vmax = calculator.limits |
---|
829 | else: |
---|
830 | vmax = Iqxy.max() |
---|
831 | vmin = vmax*10**-7 |
---|
832 | #vmin, vmax = clipped_range(Iqxy, portion=portion, mode='top') |
---|
833 | #vmin, vmax = Iqxy.min(), Iqxy.max() |
---|
834 | #print("range",(vmin,vmax)) |
---|
835 | #qx, qy = np.meshgrid(qx, qy) |
---|
836 | if 0: # pylint: disable=using-constant-test |
---|
837 | level = np.asarray(255*(Iqxy - vmin)/(vmax - vmin), 'i') |
---|
838 | level[level < 0] = 0 |
---|
839 | from matplotlib import pylab as plt |
---|
840 | colors = plt.get_cmap()(level) |
---|
841 | #from matplotlib import cm |
---|
842 | #colors = cm.coolwarm(level) |
---|
843 | #colors = cm.gist_yarg(level) |
---|
844 | #colors = cm.Wistia(level) |
---|
845 | colors[level <= 0, 3] = 0. # set floor to transparent |
---|
846 | x, y = np.meshgrid(qx/qx.max(), qy/qy.max()) |
---|
847 | axes.plot_surface(x, y, -1.1*np.ones_like(x), facecolors=colors) |
---|
848 | elif 1: # pylint: disable=using-constant-test |
---|
849 | axes.contourf(qx/qx.max(), qy/qy.max(), Iqxy, zdir='z', offset=-1.1, |
---|
850 | levels=np.linspace(vmin, vmax, 24)) |
---|
851 | else: |
---|
852 | axes.pcolormesh(qx, qy, Iqxy) |
---|
853 | |
---|
854 | def build_model(model_name, n=150, qmax=0.5, **pars): |
---|
855 | """ |
---|
856 | Build a calculator for the given shape. |
---|
857 | |
---|
858 | *model_name* is any sasmodels model. *n* and *qmax* define an n x n mesh |
---|
859 | on which to evaluate the model. The remaining parameters are stored in |
---|
860 | the returned calculator as *calculator.pars*. They are used by |
---|
861 | :func:`draw_scattering` to set the non-orientation parameters in the |
---|
862 | calculation. |
---|
863 | |
---|
864 | Returns a *calculator* function which takes a dictionary or parameters and |
---|
865 | produces Iqxy. The Iqxy value needs to be reshaped to an n x n matrix |
---|
866 | for plotting. See the :class:`sasmodels.direct_model.DirectModel` class |
---|
867 | for details. |
---|
868 | """ |
---|
869 | from sasmodels.core import load_model_info, build_model as build_sasmodel |
---|
870 | from sasmodels.data import empty_data2D |
---|
871 | from sasmodels.direct_model import DirectModel |
---|
872 | |
---|
873 | model_info = load_model_info(model_name) |
---|
874 | model = build_sasmodel(model_info) #, dtype='double!') |
---|
875 | q = np.linspace(-qmax, qmax, n) |
---|
876 | data = empty_data2D(q, q) |
---|
877 | calculator = DirectModel(data, model) |
---|
878 | |
---|
879 | # Remember the data axes so we can plot the results |
---|
880 | calculator.qxqy = (q, q) |
---|
881 | |
---|
882 | # stuff the values for non-orientation parameters into the calculator |
---|
883 | calculator.pars = pars.copy() |
---|
884 | calculator.pars.setdefault('backgound', 1e-3) |
---|
885 | |
---|
886 | # fix the data limits so that we can see if the pattern fades |
---|
887 | # under rotation or angular dispersion |
---|
888 | Iqxy = calculator(theta=0, phi=0, psi=0, **calculator.pars) |
---|
889 | Iqxy = log(Iqxy) |
---|
890 | vmin, vmax = clipped_range(Iqxy, 0.95, mode='top') |
---|
891 | calculator.limits = vmin, vmax+1 |
---|
892 | |
---|
893 | return calculator |
---|
894 | |
---|
895 | def select_calculator(model_name, n=150, size=(10, 40, 100)): |
---|
896 | """ |
---|
897 | Create a model calculator for the given shape. |
---|
898 | |
---|
899 | *model_name* is one of sphere, cylinder, ellipsoid, triaxial_ellipsoid, |
---|
900 | parallelepiped or bcc_paracrystal. *n* is the number of points to use |
---|
901 | in the q range. *qmax* is chosen based on model parameters for the |
---|
902 | given model to show something intersting. |
---|
903 | |
---|
904 | Returns *calculator* and tuple *size* (a,b,c) giving minor and major |
---|
905 | equitorial axes and polar axis respectively. See :func:`build_model` |
---|
906 | for details on the returned calculator. |
---|
907 | """ |
---|
908 | a, b, c = size |
---|
909 | d_factor = 0.06 # for paracrystal models |
---|
910 | if model_name == 'sphere': |
---|
911 | calculator = build_model('sphere', n=n, radius=c) |
---|
912 | a = b = c |
---|
913 | elif model_name == 'sc_paracrystal': |
---|
914 | a = b = c |
---|
915 | dnn = c |
---|
916 | radius = 0.5*c |
---|
917 | calculator = build_model('sc_paracrystal', n=n, dnn=dnn, |
---|
918 | d_factor=d_factor, radius=(1-d_factor)*radius, |
---|
919 | background=0) |
---|
920 | elif model_name == 'fcc_paracrystal': |
---|
921 | a = b = c |
---|
922 | # nearest neigbour distance dnn should be 2 radius, but I think the |
---|
923 | # model uses lattice spacing rather than dnn in its calculations |
---|
924 | dnn = 0.5*c |
---|
925 | radius = sqrt(2)/4 * c |
---|
926 | calculator = build_model('fcc_paracrystal', n=n, dnn=dnn, |
---|
927 | d_factor=d_factor, radius=(1-d_factor)*radius, |
---|
928 | background=0) |
---|
929 | elif model_name == 'bcc_paracrystal': |
---|
930 | a = b = c |
---|
931 | # nearest neigbour distance dnn should be 2 radius, but I think the |
---|
932 | # model uses lattice spacing rather than dnn in its calculations |
---|
933 | dnn = 0.5*c |
---|
934 | radius = sqrt(3)/2 * c |
---|
935 | calculator = build_model('bcc_paracrystal', n=n, dnn=dnn, |
---|
936 | d_factor=d_factor, radius=(1-d_factor)*radius, |
---|
937 | background=0) |
---|
938 | elif model_name == 'cylinder': |
---|
939 | calculator = build_model('cylinder', n=n, qmax=0.3, radius=b, length=c) |
---|
940 | a = b |
---|
941 | elif model_name == 'ellipsoid': |
---|
942 | calculator = build_model('ellipsoid', n=n, qmax=1.0, |
---|
943 | radius_polar=c, radius_equatorial=b) |
---|
944 | a = b |
---|
945 | elif model_name == 'triaxial_ellipsoid': |
---|
946 | calculator = build_model('triaxial_ellipsoid', n=n, qmax=0.5, |
---|
947 | radius_equat_minor=a, |
---|
948 | radius_equat_major=b, |
---|
949 | radius_polar=c) |
---|
950 | elif model_name == 'parallelepiped': |
---|
951 | calculator = build_model('parallelepiped', n=n, a=a, b=b, c=c) |
---|
952 | else: |
---|
953 | raise ValueError("unknown model %s"%model_name) |
---|
954 | |
---|
955 | return calculator, (a, b, c) |
---|
956 | |
---|
957 | SHAPES = [ |
---|
958 | 'parallelepiped', |
---|
959 | 'sphere', 'ellipsoid', 'triaxial_ellipsoid', |
---|
960 | 'cylinder', |
---|
961 | 'fcc_paracrystal', 'bcc_paracrystal', 'sc_paracrystal', |
---|
962 | ] |
---|
963 | |
---|
964 | DRAW_SHAPES = { |
---|
965 | 'fcc_paracrystal': draw_fcc, |
---|
966 | 'bcc_paracrystal': draw_bcc, |
---|
967 | 'sc_paracrystal': draw_sc, |
---|
968 | 'parallelepiped': draw_parallelepiped, |
---|
969 | } |
---|
970 | |
---|
971 | DISTRIBUTIONS = [ |
---|
972 | 'gaussian', 'rectangle', 'uniform', |
---|
973 | ] |
---|
974 | DIST_LIMITS = { |
---|
975 | 'gaussian': 30, |
---|
976 | 'rectangle': 90/sqrt(3), |
---|
977 | 'uniform': 90, |
---|
978 | } |
---|
979 | |
---|
980 | |
---|
981 | def run(model_name='parallelepiped', size=(10, 40, 100), |
---|
982 | view=(0, 0, 0), jitter=(0, 0, 0), |
---|
983 | dist='gaussian', mesh=30, |
---|
984 | projection='equirectangular'): |
---|
985 | """ |
---|
986 | Show an interactive orientation and jitter demo. |
---|
987 | |
---|
988 | *model_name* is one of: sphere, ellipsoid, triaxial_ellipsoid, |
---|
989 | parallelepiped, cylinder, or sc/fcc/bcc_paracrystal |
---|
990 | |
---|
991 | *size* gives the dimensions (a, b, c) of the shape. |
---|
992 | |
---|
993 | *view* gives the initial view (theta, phi, psi) of the shape. |
---|
994 | |
---|
995 | *view* gives the initial jitter (dtheta, dphi, dpsi) of the shape. |
---|
996 | |
---|
997 | *dist* is the type of dispersition: gaussian, rectangle, or uniform. |
---|
998 | |
---|
999 | *mesh* is the number of points in the dispersion mesh. |
---|
1000 | |
---|
1001 | *projection* is the map projection to use for the mesh: equirectangular, |
---|
1002 | sinusoidal, guyou, azimuthal_equidistance, or azimuthal_equal_area. |
---|
1003 | """ |
---|
1004 | # projection number according to 1-order position in list, but |
---|
1005 | # only 1 and 2 are implemented so far. |
---|
1006 | from sasmodels import generate |
---|
1007 | generate.PROJECTION = PROJECTIONS.index(projection) + 1 |
---|
1008 | if generate.PROJECTION > 2: |
---|
1009 | print("*** PROJECTION %s not implemented in scattering function ***"%projection) |
---|
1010 | generate.PROJECTION = 2 |
---|
1011 | |
---|
1012 | # set up calculator |
---|
1013 | calculator, size = select_calculator(model_name, n=150, size=size) |
---|
1014 | draw_shape = DRAW_SHAPES.get(model_name, draw_parallelepiped) |
---|
1015 | #draw_shape = draw_fcc |
---|
1016 | |
---|
1017 | ## uncomment to set an independent the colour range for every view |
---|
1018 | ## If left commented, the colour range is fixed for all views |
---|
1019 | calculator.limits = None |
---|
1020 | |
---|
1021 | PLOT_ENGINE(calculator, draw_shape, size, view, jitter, dist, mesh, projection) |
---|
1022 | |
---|
1023 | def _mpl_plot(calculator, draw_shape, size, view, jitter, dist, mesh, projection): |
---|
1024 | # Note: travis-ci does not support mpl_toolkits.mplot3d, but this shouldn't be |
---|
1025 | # an issue since we are lazy-loading the package on a path that isn't tested. |
---|
1026 | # Importing mplot3d adds projection='3d' option to subplot |
---|
1027 | import mpl_toolkits.mplot3d # pylint: disable=unused-variable |
---|
1028 | import matplotlib as mpl |
---|
1029 | import matplotlib.pyplot as plt |
---|
1030 | from matplotlib.widgets import Slider |
---|
1031 | |
---|
1032 | ## create the plot window |
---|
1033 | #plt.hold(True) |
---|
1034 | plt.subplots(num=None, figsize=(5.5, 5.5)) |
---|
1035 | plt.set_cmap('gist_earth') |
---|
1036 | plt.clf() |
---|
1037 | plt.gcf().canvas.set_window_title(projection) |
---|
1038 | #gs = gridspec.GridSpec(2,1,height_ratios=[4,1]) |
---|
1039 | #axes = plt.subplot(gs[0], projection='3d') |
---|
1040 | axes = plt.axes([0.0, 0.2, 1.0, 0.8], projection='3d') |
---|
1041 | try: # CRUFT: not all versions of matplotlib accept 'square' 3d projection |
---|
1042 | axes.axis('square') |
---|
1043 | except Exception: |
---|
1044 | pass |
---|
1045 | |
---|
1046 | # CRUFT: use axisbg instead of facecolor for matplotlib<2 |
---|
1047 | facecolor_prop = 'facecolor' if mpl.__version__ > '2' else 'axisbg' |
---|
1048 | props = {facecolor_prop: 'lightgoldenrodyellow'} |
---|
1049 | |
---|
1050 | ## add control widgets to plot |
---|
1051 | axes_theta = plt.axes([0.05, 0.15, 0.50, 0.04], **props) |
---|
1052 | axes_phi = plt.axes([0.05, 0.10, 0.50, 0.04], **props) |
---|
1053 | axes_psi = plt.axes([0.05, 0.05, 0.50, 0.04], **props) |
---|
1054 | stheta = Slider(axes_theta, u'Ξ', -90, 90, valinit=0) |
---|
1055 | sphi = Slider(axes_phi, u'Ï', -180, 180, valinit=0) |
---|
1056 | spsi = Slider(axes_psi, u'Ï', -180, 180, valinit=0) |
---|
1057 | |
---|
1058 | axes_dtheta = plt.axes([0.70, 0.15, 0.20, 0.04], **props) |
---|
1059 | axes_dphi = plt.axes([0.70, 0.1, 0.20, 0.04], **props) |
---|
1060 | axes_dpsi = plt.axes([0.70, 0.05, 0.20, 0.04], **props) |
---|
1061 | |
---|
1062 | # Note: using ridiculous definition of rectangle distribution, whose width |
---|
1063 | # in sasmodels is sqrt(3) times the given width. Divide by sqrt(3) to keep |
---|
1064 | # the maximum width to 90. |
---|
1065 | dlimit = DIST_LIMITS[dist] |
---|
1066 | sdtheta = Slider(axes_dtheta, u'ÎΞ', 0, 2*dlimit, valinit=0) |
---|
1067 | sdphi = Slider(axes_dphi, u'ÎÏ', 0, 2*dlimit, valinit=0) |
---|
1068 | sdpsi = Slider(axes_dpsi, u'ÎÏ', 0, 2*dlimit, valinit=0) |
---|
1069 | |
---|
1070 | ## initial view and jitter |
---|
1071 | theta, phi, psi = view |
---|
1072 | stheta.set_val(theta) |
---|
1073 | sphi.set_val(phi) |
---|
1074 | spsi.set_val(psi) |
---|
1075 | dtheta, dphi, dpsi = jitter |
---|
1076 | sdtheta.set_val(dtheta) |
---|
1077 | sdphi.set_val(dphi) |
---|
1078 | sdpsi.set_val(dpsi) |
---|
1079 | |
---|
1080 | ## callback to draw the new view |
---|
1081 | def _update(val, axis=None): |
---|
1082 | # pylint: disable=unused-argument |
---|
1083 | view = stheta.val, sphi.val, spsi.val |
---|
1084 | jitter = sdtheta.val, sdphi.val, sdpsi.val |
---|
1085 | # set small jitter as 0 if multiple pd dims |
---|
1086 | dims = sum(v > 0 for v in jitter) |
---|
1087 | limit = [0, 0.5, 5, 5][dims] |
---|
1088 | jitter = [0 if v < limit else v for v in jitter] |
---|
1089 | axes.cla() |
---|
1090 | |
---|
1091 | ## Visualize as person on globe |
---|
1092 | #draw_sphere(axes, radius=0.5) |
---|
1093 | #draw_person_on_sphere(axes, view, radius=0.5) |
---|
1094 | |
---|
1095 | ## Move beam instead of shape |
---|
1096 | #draw_beam(axes, -view[:2]) |
---|
1097 | #draw_jitter(axes, (0,0,0), (0,0,0), views=3) |
---|
1098 | |
---|
1099 | ## Move shape and draw scattering |
---|
1100 | draw_beam(axes, (0, 0), alpha=1.) |
---|
1101 | #draw_person_on_sphere(axes, view, radius=1.2, height=0.5) |
---|
1102 | draw_jitter(axes, view, jitter, dist=dist, size=size, alpha=1., |
---|
1103 | draw_shape=draw_shape, projection=projection, views=3) |
---|
1104 | draw_mesh(axes, view, jitter, dist=dist, n=mesh, projection=projection) |
---|
1105 | draw_scattering(calculator, axes, view, jitter, dist=dist) |
---|
1106 | |
---|
1107 | plt.gcf().canvas.draw() |
---|
1108 | |
---|
1109 | ## bind control widgets to view updater |
---|
1110 | stheta.on_changed(lambda v: _update(v, 'theta')) |
---|
1111 | sphi.on_changed(lambda v: _update(v, 'phi')) |
---|
1112 | spsi.on_changed(lambda v: _update(v, 'psi')) |
---|
1113 | sdtheta.on_changed(lambda v: _update(v, 'dtheta')) |
---|
1114 | sdphi.on_changed(lambda v: _update(v, 'dphi')) |
---|
1115 | sdpsi.on_changed(lambda v: _update(v, 'dpsi')) |
---|
1116 | |
---|
1117 | ## initialize view |
---|
1118 | _update(None, 'phi') |
---|
1119 | |
---|
1120 | ## go interactive |
---|
1121 | plt.show() |
---|
1122 | |
---|
1123 | |
---|
1124 | def map_colors(z, kw): |
---|
1125 | """ |
---|
1126 | Process matplotlib-style colour arguments. |
---|
1127 | |
---|
1128 | Pulls 'cmap', 'alpha', 'vmin', and 'vmax' from th *kw* dictionary, setting |
---|
1129 | the *kw['color']* to an RGB array. These are ignored if 'c' or 'color' are |
---|
1130 | set inside *kw*. |
---|
1131 | """ |
---|
1132 | from matplotlib import cm |
---|
1133 | |
---|
1134 | cmap = kw.pop('cmap', cm.coolwarm) |
---|
1135 | alpha = kw.pop('alpha', None) |
---|
1136 | vmin = kw.pop('vmin', z.min()) |
---|
1137 | vmax = kw.pop('vmax', z.max()) |
---|
1138 | c = kw.pop('c', None) |
---|
1139 | color = kw.pop('color', c) |
---|
1140 | if color is None: |
---|
1141 | znorm = ((z - vmin) / (vmax - vmin)).clip(0, 1) |
---|
1142 | color = cmap(znorm) |
---|
1143 | elif isinstance(color, np.ndarray) and color.shape == z.shape: |
---|
1144 | color = cmap(color) |
---|
1145 | if alpha is None: |
---|
1146 | if isinstance(color, np.ndarray): |
---|
1147 | color = color[..., :3] |
---|
1148 | else: |
---|
1149 | color[..., 3] = alpha |
---|
1150 | kw['color'] = color |
---|
1151 | |
---|
1152 | def make_vec(*args): |
---|
1153 | """Turn all elements of *args* into numpy arrays""" |
---|
1154 | #return [np.asarray(v, 'd').flatten() for v in args] |
---|
1155 | return [np.asarray(v, 'd') for v in args] |
---|
1156 | |
---|
1157 | def make_image(z, kw): |
---|
1158 | """Convert numpy array *z* into a *PIL* RGB image.""" |
---|
1159 | import PIL.Image |
---|
1160 | from matplotlib import cm |
---|
1161 | |
---|
1162 | cmap = kw.pop('cmap', cm.coolwarm) |
---|
1163 | |
---|
1164 | znorm = (z-z.min())/z.ptp() |
---|
1165 | c = cmap(znorm) |
---|
1166 | c = c[..., :3] |
---|
1167 | rgb = np.asarray(c*255, 'u1') |
---|
1168 | image = PIL.Image.fromarray(rgb, mode='RGB') |
---|
1169 | return image |
---|
1170 | |
---|
1171 | |
---|
1172 | _IPV_MARKERS = { |
---|
1173 | 'o': 'sphere', |
---|
1174 | } |
---|
1175 | _IPV_COLORS = { |
---|
1176 | 'w': 'white', |
---|
1177 | 'k': 'black', |
---|
1178 | 'c': 'cyan', |
---|
1179 | 'm': 'magenta', |
---|
1180 | 'y': 'yellow', |
---|
1181 | 'r': 'red', |
---|
1182 | 'g': 'green', |
---|
1183 | 'b': 'blue', |
---|
1184 | } |
---|
1185 | def _ipv_fix_color(kw): |
---|
1186 | alpha = kw.pop('alpha', None) |
---|
1187 | color = kw.get('color', None) |
---|
1188 | if isinstance(color, str): |
---|
1189 | color = _IPV_COLORS.get(color, color) |
---|
1190 | kw['color'] = color |
---|
1191 | if alpha is not None: |
---|
1192 | color = kw['color'] |
---|
1193 | #TODO: convert color to [r, g, b, a] if not already |
---|
1194 | if isinstance(color, (tuple, list)): |
---|
1195 | if len(color) == 3: |
---|
1196 | color = (color[0], color[1], color[2], alpha) |
---|
1197 | else: |
---|
1198 | color = (color[0], color[1], color[2], alpha*color[3]) |
---|
1199 | color = np.array(color) |
---|
1200 | if isinstance(color, np.ndarray) and color.shape[-1] == 4: |
---|
1201 | color[..., 3] = alpha |
---|
1202 | kw['color'] = color |
---|
1203 | |
---|
1204 | def _ipv_set_transparency(kw, obj): |
---|
1205 | color = kw.get('color', None) |
---|
1206 | if (isinstance(color, np.ndarray) |
---|
1207 | and color.shape[-1] == 4 |
---|
1208 | and (color[..., 3] != 1.0).any()): |
---|
1209 | obj.material.transparent = True |
---|
1210 | obj.material.side = "FrontSide" |
---|
1211 | |
---|
1212 | def ipv_axes(): |
---|
1213 | """ |
---|
1214 | Build a matplotlib style Axes interface for ipyvolume |
---|
1215 | """ |
---|
1216 | import ipyvolume as ipv |
---|
1217 | |
---|
1218 | class Axes(object): |
---|
1219 | """ |
---|
1220 | Matplotlib Axes3D style interface to ipyvolume renderer. |
---|
1221 | """ |
---|
1222 | # pylint: disable=no-self-use,no-init |
---|
1223 | # transparency can be achieved by setting the following: |
---|
1224 | # mesh.color = [r, g, b, alpha] |
---|
1225 | # mesh.material.transparent = True |
---|
1226 | # mesh.material.side = "FrontSide" |
---|
1227 | # smooth(ish) rotation can be achieved by setting: |
---|
1228 | # slide.continuous_update = True |
---|
1229 | # figure.animation = 0. |
---|
1230 | # mesh.material.x = x |
---|
1231 | # mesh.material.y = y |
---|
1232 | # mesh.material.z = z |
---|
1233 | # maybe need to synchronize update of x/y/z to avoid shimmy when moving |
---|
1234 | def plot(self, x, y, z, **kw): |
---|
1235 | """mpl style plot interface for ipyvolume""" |
---|
1236 | _ipv_fix_color(kw) |
---|
1237 | x, y, z = make_vec(x, y, z) |
---|
1238 | ipv.plot(x, y, z, **kw) |
---|
1239 | def plot_surface(self, x, y, z, **kw): |
---|
1240 | """mpl style plot_surface interface for ipyvolume""" |
---|
1241 | facecolors = kw.pop('facecolors', None) |
---|
1242 | if facecolors is not None: |
---|
1243 | kw['color'] = facecolors |
---|
1244 | _ipv_fix_color(kw) |
---|
1245 | x, y, z = make_vec(x, y, z) |
---|
1246 | h = ipv.plot_surface(x, y, z, **kw) |
---|
1247 | _ipv_set_transparency(kw, h) |
---|
1248 | #h.material.side = "DoubleSide" |
---|
1249 | return h |
---|
1250 | def plot_trisurf(self, x, y, triangles=None, Z=None, **kw): |
---|
1251 | """mpl style plot_trisurf interface for ipyvolume""" |
---|
1252 | kw.pop('linewidth', None) |
---|
1253 | _ipv_fix_color(kw) |
---|
1254 | x, y, z = make_vec(x, y, Z) |
---|
1255 | if triangles is not None: |
---|
1256 | triangles = np.asarray(triangles) |
---|
1257 | h = ipv.plot_trisurf(x, y, z, triangles=triangles, **kw) |
---|
1258 | _ipv_set_transparency(kw, h) |
---|
1259 | return h |
---|
1260 | def scatter(self, x, y, z, **kw): |
---|
1261 | """mpl style scatter interface for ipyvolume""" |
---|
1262 | x, y, z = make_vec(x, y, z) |
---|
1263 | map_colors(z, kw) |
---|
1264 | marker = kw.get('marker', None) |
---|
1265 | kw['marker'] = _IPV_MARKERS.get(marker, marker) |
---|
1266 | h = ipv.scatter(x, y, z, **kw) |
---|
1267 | _ipv_set_transparency(kw, h) |
---|
1268 | return h |
---|
1269 | def contourf(self, x, y, v, zdir='z', offset=0, levels=None, **kw): |
---|
1270 | """mpl style contourf interface for ipyvolume""" |
---|
1271 | # pylint: disable=unused-argument |
---|
1272 | # Don't use contour for now (although we might want to later) |
---|
1273 | self.pcolor(x, y, v, zdir='z', offset=offset, **kw) |
---|
1274 | def pcolor(self, x, y, v, zdir='z', offset=0, **kw): |
---|
1275 | """mpl style pcolor interface for ipyvolume""" |
---|
1276 | # pylint: disable=unused-argument |
---|
1277 | x, y, v = make_vec(x, y, v) |
---|
1278 | image = make_image(v, kw) |
---|
1279 | xmin, xmax = x.min(), x.max() |
---|
1280 | ymin, ymax = y.min(), y.max() |
---|
1281 | x = np.array([[xmin, xmax], [xmin, xmax]]) |
---|
1282 | y = np.array([[ymin, ymin], [ymax, ymax]]) |
---|
1283 | z = x*0 + offset |
---|
1284 | u = np.array([[0., 1], [0, 1]]) |
---|
1285 | v = np.array([[0., 0], [1, 1]]) |
---|
1286 | h = ipv.plot_mesh(x, y, z, u=u, v=v, texture=image, wireframe=False) |
---|
1287 | _ipv_set_transparency(kw, h) |
---|
1288 | h.material.side = "DoubleSide" |
---|
1289 | return h |
---|
1290 | def text(self, *args, **kw): |
---|
1291 | """mpl style text interface for ipyvolume""" |
---|
1292 | pass |
---|
1293 | def set_xlim(self, limits): |
---|
1294 | """mpl style set_xlim interface for ipyvolume""" |
---|
1295 | ipv.xlim(*limits) |
---|
1296 | def set_ylim(self, limits): |
---|
1297 | """mpl style set_ylim interface for ipyvolume""" |
---|
1298 | ipv.ylim(*limits) |
---|
1299 | def set_zlim(self, limits): |
---|
1300 | """mpl style set_zlim interface for ipyvolume""" |
---|
1301 | ipv.zlim(*limits) |
---|
1302 | def set_axes_on(self): |
---|
1303 | """mpl style set_axes_on interface for ipyvolume""" |
---|
1304 | ipv.style.axis_on() |
---|
1305 | def set_axis_off(self): |
---|
1306 | """mpl style set_axes_off interface for ipyvolume""" |
---|
1307 | ipv.style.axes_off() |
---|
1308 | return Axes() |
---|
1309 | |
---|
1310 | def _ipv_plot(calculator, draw_shape, size, view, jitter, dist, mesh, projection): |
---|
1311 | from IPython.display import display |
---|
1312 | import ipywidgets as widgets |
---|
1313 | import ipyvolume as ipv |
---|
1314 | |
---|
1315 | axes = ipv_axes() |
---|
1316 | |
---|
1317 | def _draw(view, jitter): |
---|
1318 | camera = ipv.gcf().camera |
---|
1319 | #print(ipv.gcf().__dict__.keys()) |
---|
1320 | #print(dir(ipv.gcf())) |
---|
1321 | ipv.figure(animation=0.) # no animation when updating object mesh |
---|
1322 | |
---|
1323 | # set small jitter as 0 if multiple pd dims |
---|
1324 | dims = sum(v > 0 for v in jitter) |
---|
1325 | limit = [0, 0.5, 5, 5][dims] |
---|
1326 | jitter = [0 if v < limit else v for v in jitter] |
---|
1327 | |
---|
1328 | ## Visualize as person on globe |
---|
1329 | #draw_beam(axes, (0, 0)) |
---|
1330 | #draw_sphere(axes, radius=0.5) |
---|
1331 | #draw_person_on_sphere(axes, view, radius=0.5) |
---|
1332 | |
---|
1333 | ## Move beam instead of shape |
---|
1334 | #draw_beam(axes, view=(-view[0], -view[1])) |
---|
1335 | #draw_jitter(axes, view=(0,0,0), jitter=(0,0,0)) |
---|
1336 | |
---|
1337 | ## Move shape and draw scattering |
---|
1338 | draw_beam(axes, (0, 0), steps=25) |
---|
1339 | draw_jitter(axes, view, jitter, dist=dist, size=size, alpha=1.0, |
---|
1340 | draw_shape=draw_shape, projection=projection) |
---|
1341 | draw_mesh(axes, view, jitter, dist=dist, n=mesh, radius=0.95, |
---|
1342 | projection=projection) |
---|
1343 | draw_scattering(calculator, axes, view, jitter, dist=dist) |
---|
1344 | |
---|
1345 | draw_axes(axes, origin=(-1, -1, -1.1)) |
---|
1346 | ipv.style.box_off() |
---|
1347 | ipv.style.axes_off() |
---|
1348 | ipv.xyzlabel(" ", " ", " ") |
---|
1349 | |
---|
1350 | ipv.gcf().camera = camera |
---|
1351 | ipv.show() |
---|
1352 | |
---|
1353 | |
---|
1354 | trange, prange = (-180., 180., 1.), (-180., 180., 1.) |
---|
1355 | dtrange, dprange = (0., 180., 1.), (0., 180., 1.) |
---|
1356 | |
---|
1357 | ## Super simple interfaca, but uses non-ascii variable namese |
---|
1358 | # Ξ Ï Ï ÎΞ ÎÏ ÎÏ |
---|
1359 | #def update(**kw): |
---|
1360 | # view = kw['Ξ'], kw['Ï'], kw['Ï'] |
---|
1361 | # jitter = kw['ÎΞ'], kw['ÎÏ'], kw['ÎÏ'] |
---|
1362 | # draw(view, jitter) |
---|
1363 | #widgets.interact(update, Ξ=trange, Ï=prange, Ï=prange, ÎΞ=dtrange, ÎÏ=dprange, ÎÏ=dprange) |
---|
1364 | |
---|
1365 | def _update(theta, phi, psi, dtheta, dphi, dpsi): |
---|
1366 | _draw(view=(theta, phi, psi), jitter=(dtheta, dphi, dpsi)) |
---|
1367 | |
---|
1368 | def _slider(name, slice, init=0.): |
---|
1369 | return widgets.FloatSlider( |
---|
1370 | value=init, |
---|
1371 | min=slice[0], |
---|
1372 | max=slice[1], |
---|
1373 | step=slice[2], |
---|
1374 | description=name, |
---|
1375 | disabled=False, |
---|
1376 | #continuous_update=True, |
---|
1377 | continuous_update=False, |
---|
1378 | orientation='horizontal', |
---|
1379 | readout=True, |
---|
1380 | readout_format='.1f', |
---|
1381 | ) |
---|
1382 | theta = _slider(u'Ξ', trange, view[0]) |
---|
1383 | phi = _slider(u'Ï', prange, view[1]) |
---|
1384 | psi = _slider(u'Ï', prange, view[2]) |
---|
1385 | dtheta = _slider(u'ÎΞ', dtrange, jitter[0]) |
---|
1386 | dphi = _slider(u'ÎÏ', dprange, jitter[1]) |
---|
1387 | dpsi = _slider(u'ÎÏ', dprange, jitter[2]) |
---|
1388 | fields = { |
---|
1389 | 'theta': theta, 'phi': phi, 'psi': psi, |
---|
1390 | 'dtheta': dtheta, 'dphi': dphi, 'dpsi': dpsi, |
---|
1391 | } |
---|
1392 | ui = widgets.HBox([ |
---|
1393 | widgets.VBox([theta, phi, psi]), |
---|
1394 | widgets.VBox([dtheta, dphi, dpsi]) |
---|
1395 | ]) |
---|
1396 | |
---|
1397 | out = widgets.interactive_output(_update, fields) |
---|
1398 | display(ui, out) |
---|
1399 | |
---|
1400 | |
---|
1401 | _ENGINES = { |
---|
1402 | "matplotlib": _mpl_plot, |
---|
1403 | "mpl": _mpl_plot, |
---|
1404 | #"plotly": _plotly_plot, |
---|
1405 | "ipvolume": _ipv_plot, |
---|
1406 | "ipv": _ipv_plot, |
---|
1407 | } |
---|
1408 | PLOT_ENGINE = _ENGINES["matplotlib"] |
---|
1409 | def set_plotter(name): |
---|
1410 | """ |
---|
1411 | Setting the plotting engine to matplotlib/ipyvolume or equivalently mpl/ipv. |
---|
1412 | """ |
---|
1413 | global PLOT_ENGINE |
---|
1414 | PLOT_ENGINE = _ENGINES[name] |
---|
1415 | |
---|
1416 | def main(): |
---|
1417 | """ |
---|
1418 | Command line interface to the jitter viewer. |
---|
1419 | """ |
---|
1420 | parser = argparse.ArgumentParser( |
---|
1421 | description="Display jitter", |
---|
1422 | formatter_class=argparse.ArgumentDefaultsHelpFormatter, |
---|
1423 | ) |
---|
1424 | parser.add_argument('-p', '--projection', choices=PROJECTIONS, |
---|
1425 | default=PROJECTIONS[0], |
---|
1426 | help='coordinate projection') |
---|
1427 | parser.add_argument('-s', '--size', type=str, default='10,40,100', |
---|
1428 | help='a,b,c lengths') |
---|
1429 | parser.add_argument('-v', '--view', type=str, default='0,0,0', |
---|
1430 | help='initial view angles') |
---|
1431 | parser.add_argument('-j', '--jitter', type=str, default='0,0,0', |
---|
1432 | help='initial angular dispersion') |
---|
1433 | parser.add_argument('-d', '--distribution', choices=DISTRIBUTIONS, |
---|
1434 | default=DISTRIBUTIONS[0], |
---|
1435 | help='jitter distribution') |
---|
1436 | parser.add_argument('-m', '--mesh', type=int, default=30, |
---|
1437 | help='#points in theta-phi mesh') |
---|
1438 | parser.add_argument('shape', choices=SHAPES, nargs='?', default=SHAPES[0], |
---|
1439 | help='oriented shape') |
---|
1440 | opts = parser.parse_args() |
---|
1441 | size = tuple(float(v) for v in opts.size.split(',')) |
---|
1442 | view = tuple(float(v) for v in opts.view.split(',')) |
---|
1443 | jitter = tuple(float(v) for v in opts.jitter.split(',')) |
---|
1444 | run(opts.shape, size=size, view=view, jitter=jitter, |
---|
1445 | mesh=opts.mesh, dist=opts.distribution, |
---|
1446 | projection=opts.projection) |
---|
1447 | |
---|
1448 | if __name__ == "__main__": |
---|
1449 | main() |
---|