source: sasmodels/sasmodels/generate.py @ e66c9f9

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since e66c9f9 was e66c9f9, checked in by Paul Kienzle <pkienzle@…>, 8 years ago

allow for units as list of strings (for rpa model)

  • Property mode set to 100644
File size: 26.1 KB
Line 
1"""
2SAS model constructor.
3
4Small angle scattering models are defined by a set of kernel functions:
5
6    *Iq(q, p1, p2, ...)* returns the scattering at q for a form with
7    particular dimensions averaged over all orientations.
8
9    *Iqxy(qx, qy, p1, p2, ...)* returns the scattering at qx,qy for a form
10    with particular dimensions for a single orientation.
11
12    *Imagnetic(qx, qy, result[], p1, p2, ...)* returns the scattering for the
13    polarized neutron spin states (up-up, up-down, down-up, down-down) for
14    a form with particular dimensions for a single orientation.
15
16    *form_volume(p1, p2, ...)* returns the volume of the form with particular
17    dimension.
18
19    *ER(p1, p2, ...)* returns the effective radius of the form with
20    particular dimensions.
21
22    *VR(p1, p2, ...)* returns the volume ratio for core-shell style forms.
23
24These functions are defined in a kernel module .py script and an associated
25set of .c files.  The model constructor will use them to create models with
26polydispersity across volume and orientation parameters, and provide
27scale and background parameters for each model.
28
29*Iq*, *Iqxy*, *Imagnetic* and *form_volume* should be stylized C-99
30functions written for OpenCL.  All functions need prototype declarations
31even if the are defined before they are used.  OpenCL does not support
32*#include* preprocessor directives, so instead the list of includes needs
33to be given as part of the metadata in the kernel module definition.
34The included files should be listed using a path relative to the kernel
35module, or if using "lib/file.c" if it is one of the standard includes
36provided with the sasmodels source.  The includes need to be listed in
37order so that functions are defined before they are used.
38
39Floating point values should be declared as *double*.  For single precision
40calculations, *double* will be replaced by *float*.  The single precision
41conversion will also tag floating point constants with "f" to make them
42single precision constants.  When using integral values in floating point
43expressions, they should be expressed as floating point values by including
44a decimal point.  This includes 0., 1. and 2.
45
46OpenCL has a *sincos* function which can improve performance when both
47the *sin* and *cos* values are needed for a particular argument.  Since
48this function does not exist in C99, all use of *sincos* should be
49replaced by the macro *SINCOS(value,sn,cn)* where *sn* and *cn* are
50previously declared *double* variables.  When compiled for systems without
51OpenCL, *SINCOS* will be replaced by *sin* and *cos* calls.   If *value* is
52an expression, it will appear twice in this case; whether or not it will be
53evaluated twice depends on the quality of the compiler.
54
55If the input parameters are invalid, the scattering calculator should
56return a negative number. Particularly with polydispersity, there are
57some sets of shape parameters which lead to nonsensical forms, such
58as a capped cylinder where the cap radius is smaller than the
59cylinder radius.  The polydispersity calculation will ignore these points,
60effectively chopping the parameter weight distributions at the boundary
61of the infeasible region.  The resulting scattering will be set to
62background.  This will work correctly even when polydispersity is off.
63
64*ER* and *VR* are python functions which operate on parameter vectors.
65The constructor code will generate the necessary vectors for computing
66them with the desired polydispersity.
67
68The available kernel parameters are defined as a list, with each parameter
69defined as a sublist with the following elements:
70
71    *name* is the name that will be used in the call to the kernel
72    function and the name that will be displayed to the user.  Names
73    should be lower case, with words separated by underscore.  If
74    acronyms are used, the whole acronym should be upper case.
75
76    *units* should be one of *degrees* for angles, *Ang* for lengths,
77    *1e-6/Ang^2* for SLDs.
78
79    *default value* will be the initial value for  the model when it
80    is selected, or when an initial value is not otherwise specified.
81
82    [*lb*, *ub*] are the hard limits on the parameter value, used to limit
83    the polydispersity density function.  In the fit, the parameter limits
84    given to the fit are the limits  on the central value of the parameter.
85    If there is polydispersity, it will evaluate parameter values outside
86    the fit limits, but not outside the hard limits specified in the model.
87    If there are no limits, use +/-inf imported from numpy.
88
89    *type* indicates how the parameter will be used.  "volume" parameters
90    will be used in all functions.  "orientation" parameters will be used
91    in *Iqxy* and *Imagnetic*.  "magnetic* parameters will be used in
92    *Imagnetic* only.  If *type* is the empty string, the parameter will
93    be used in all of *Iq*, *Iqxy* and *Imagnetic*.
94
95    *description* is a short description of the parameter.  This will
96    be displayed in the parameter table and used as a tool tip for the
97    parameter value in the user interface.
98
99The kernel module must set variables defining the kernel meta data:
100
101    *id* is an implicit variable formed from the filename.  It will be
102    a valid python identifier, and will be used as the reference into
103    the html documentation, with '_' replaced by '-'.
104
105    *name* is the model name as displayed to the user.  If it is missing,
106    it will be constructed from the id.
107
108    *title* is a short description of the model, suitable for a tool tip,
109    or a one line model summary in a table of models.
110
111    *description* is an extended description of the model to be displayed
112    while the model parameters are being edited.
113
114    *parameters* is the list of parameters.  Parameters in the kernel
115    functions must appear in the same order as they appear in the
116    parameters list.  Two additional parameters, *scale* and *background*
117    are added to the beginning of the parameter list.  They will show up
118    in the documentation as model parameters, but they are never sent to
119    the kernel functions.
120
121    *category* is the default category for the model.  Models in the
122    *structure-factor* category do not have *scale* and *background*
123    added.
124
125    *source* is the list of C-99 source files that must be joined to
126    create the OpenCL kernel functions.  The files defining the functions
127    need to be listed before the files which use the functions.
128
129    *ER* is a python function defining the effective radius.  If it is
130    not present, the effective radius is 0.
131
132    *VR* is a python function defining the volume ratio.  If it is not
133    present, the volume ratio is 1.
134
135    *form_volume*, *Iq*, *Iqxy*, *Imagnetic* are strings containing the
136    C source code for the body of the volume, Iq, and Iqxy functions
137    respectively.  These can also be defined in the last source file.
138
139    *Iq* and *Iqxy* also be instead be python functions defining the
140    kernel.  If they are marked as *Iq.vectorized = True* then the
141    kernel is passed the entire *q* vector at once, otherwise it is
142    passed values one *q* at a time.  The performance improvement of
143    this step is significant.
144
145    *demo* is a dictionary of parameter=value defining a set of
146    parameters to use by default when *compare* is called.  Any
147    parameter not set in *demo* gets the initial value from the
148    parameter list.  *demo* is mostly needed to set the default
149    polydispersity values for tests.
150
151    *oldname* is the name of the model in sasview before sasmodels
152    was split into its own package, and *oldpars* is a dictionary
153    of *parameter: old_parameter* pairs defining the new names for
154    the parameters.  This is used by *compare* to check the values
155    of the new model against the values of the old model before
156    you are ready to add the new model to sasmodels.
157
158
159An *info* dictionary is constructed from the kernel meta data and
160returned to the caller.
161
162The model evaluator, function call sequence consists of q inputs and the return vector,
163followed by the loop value/weight vector, followed by the values for
164the non-polydisperse parameters, followed by the lengths of the
165polydispersity loops.  To construct the call for 1D models, the
166categories *fixed-1d* and *pd-1d* list the names of the parameters
167of the non-polydisperse and the polydisperse parameters respectively.
168Similarly, *fixed-2d* and *pd-2d* provide parameter names for 2D models.
169The *pd-rel* category is a set of those parameters which give
170polydispersitiy as a portion of the value (so a 10% length dispersity
171would use a polydispersity value of 0.1) rather than absolute
172dispersity such as an angle plus or minus 15 degrees.
173
174The *volume* category lists the volume parameters in order for calls
175to volume within the kernel (used for volume normalization) and for
176calls to ER and VR for effective radius and volume ratio respectively.
177
178The *orientation* and *magnetic* categories list the orientation and
179magnetic parameters.  These are used by the sasview interface.  The
180blank category is for parameters such as scale which don't have any
181other marking.
182
183The doc string at the start of the kernel module will be used to
184construct the model documentation web pages.  Embedded figures should
185appear in the subdirectory "img" beside the model definition, and tagged
186with the kernel module name to avoid collision with other models.  Some
187file systems are case-sensitive, so only use lower case characters for
188file names and extensions.
189
190
191The function :func:`make` loads the metadata from the module and returns
192the kernel source.  The function :func:`doc` extracts the doc string
193and adds the parameter table to the top.  The function :func:`sources`
194returns a list of files required by the model.
195"""
196
197# TODO: identify model files which have changed since loading and reload them.
198
199__all__ = ["make", "doc", "sources", "convert_type"]
200
201import sys
202from os.path import abspath, dirname, join as joinpath, exists, basename, \
203    splitext
204import re
205import string
206
207import numpy as np
208C_KERNEL_TEMPLATE_PATH = joinpath(dirname(__file__), 'kernel_template.c')
209
210F16 = np.dtype('float16')
211F32 = np.dtype('float32')
212F64 = np.dtype('float64')
213try:  # CRUFT: older numpy does not support float128
214    F128 = np.dtype('float128')
215except TypeError:
216    F128 = None
217
218
219# Scale and background, which are parameters common to every form factor
220COMMON_PARAMETERS = [
221    ["scale", "", 1, [0, np.inf], "", "Source intensity"],
222    ["background", "1/cm", 0, [0, np.inf], "", "Source background"],
223    ]
224
225
226# Conversion from units defined in the parameter table for each model
227# to units displayed in the sphinx documentation.
228RST_UNITS = {
229    "Ang": "|Ang|",
230    "1/Ang": "|Ang^-1|",
231    "1/Ang^2": "|Ang^-2|",
232    "1e-6/Ang^2": "|1e-6Ang^-2|",
233    "degrees": "degree",
234    "1/cm": "|cm^-1|",
235    "": "None",
236    }
237
238# Headers for the parameters tables in th sphinx documentation
239PARTABLE_HEADERS = [
240    "Parameter",
241    "Description",
242    "Units",
243    "Default value",
244    ]
245
246# Minimum width for a default value (this is shorter than the column header
247# width, so will be ignored).
248PARTABLE_VALUE_WIDTH = 10
249
250# Documentation header for the module, giving the model name, its short
251# description and its parameter table.  The remainder of the doc comes
252# from the module docstring.
253DOC_HEADER = """.. _%(id)s:
254
255%(name)s
256=======================================================
257
258%(title)s
259
260%(parameters)s
261
262%(returns)s
263
264%(docs)s
265"""
266
267def format_units(units):
268    return "string" if isinstance(units, list) else RST_UNITS.get(units, units)
269
270def make_partable(pars):
271    """
272    Generate the parameter table to include in the sphinx documentation.
273    """
274    column_widths = [
275        max(len(p[0]) for p in pars),
276        max(len(p[-1]) for p in pars),
277        max(len(format_units(p[1])) for p in pars),
278        PARTABLE_VALUE_WIDTH,
279        ]
280    column_widths = [max(w, len(h))
281                     for w, h in zip(column_widths, PARTABLE_HEADERS)]
282
283    sep = " ".join("="*w for w in column_widths)
284    lines = [
285        sep,
286        " ".join("%-*s" % (w, h)
287                 for w, h in zip(column_widths, PARTABLE_HEADERS)),
288        sep,
289        ]
290    for p in pars:
291        lines.append(" ".join([
292            "%-*s" % (column_widths[0], p[0]),
293            "%-*s" % (column_widths[1], p[-1]),
294            "%-*s" % (column_widths[2], format_units(p[1])),
295            "%*g" % (column_widths[3], p[2]),
296            ]))
297    lines.append(sep)
298    return "\n".join(lines)
299
300def _search(search_path, filename):
301    """
302    Find *filename* in *search_path*.
303
304    Raises ValueError if file does not exist.
305    """
306    for path in search_path:
307        target = joinpath(path, filename)
308        if exists(target):
309            return target
310    raise ValueError("%r not found in %s" % (filename, search_path))
311
312def sources(info):
313    """
314    Return a list of the sources file paths for the module.
315    """
316    search_path = [dirname(info['filename']),
317                   abspath(joinpath(dirname(__file__), 'models'))]
318    return [_search(search_path, f) for f in info['source']]
319
320# Pragmas for enable OpenCL features.  Be sure to protect them so that they
321# still compile even if OpenCL is not present.
322_F16_PRAGMA = """\
323#if defined(__OPENCL_VERSION__) && !defined(cl_khr_fp16)
324#  pragma OPENCL EXTENSION cl_khr_fp16: enable
325#endif
326"""
327
328_F64_PRAGMA = """\
329#if defined(__OPENCL_VERSION__) && !defined(cl_khr_fp64)
330#  pragma OPENCL EXTENSION cl_khr_fp64: enable
331#endif
332"""
333
334def convert_type(source, dtype):
335    """
336    Convert code from double precision to the desired type.
337    """
338    if dtype == F16:
339        source = _F16_PRAGMA + _convert_type(source, "half", "f")
340    elif dtype == F32:
341        source = _convert_type(source, "float", "f")
342    elif dtype == F64:
343        source = _F64_PRAGMA + source  # Source is already double
344    elif dtype == F128:
345        source = _convert_type(source, "long double", "L")
346    else:
347        raise ValueError("Unexpected dtype in source conversion: %s"%dtype)
348    return source
349
350
351def _convert_type(source, type_name, constant_flag):
352    # Convert double keyword to float/long double/half.
353    # Accept an 'n' # parameter for vector # values, where n is 2, 4, 8 or 16.
354    # Assume complex numbers are represented as cdouble which is typedef'd
355    # to double2.
356    source = re.sub(r'(^|[^a-zA-Z0-9_]c?)double(([248]|16)?($|[^a-zA-Z0-9_]))',
357                    r'\1%s\2'%type_name, source)
358    # Convert floating point constants to single by adding 'f' to the end,
359    # or long double with an 'L' suffix.  OS/X complains if you don't do this.
360    source = re.sub(r'[^a-zA-Z_](\d*[.]\d+|\d+[.]\d*)([eE][+-]?\d+)?',
361                    r'\g<0>%s'%constant_flag, source)
362    return source
363
364
365def kernel_name(info, is_2D):
366    """
367    Name of the exported kernel symbol.
368    """
369    return info['name'] + "_" + ("Iqxy" if is_2D else "Iq")
370
371
372def categorize_parameters(pars):
373    """
374    Build parameter categories out of the the parameter definitions.
375
376    Returns a dictionary of categories.
377    """
378    partype = {
379        'volume': [], 'orientation': [], 'magnetic': [], '': [],
380        'fixed-1d': [], 'fixed-2d': [], 'pd-1d': [], 'pd-2d': [],
381        'pd-rel': set(),
382    }
383
384    for p in pars:
385        name, ptype = p[0], p[4]
386        if ptype == 'volume':
387            partype['pd-1d'].append(name)
388            partype['pd-2d'].append(name)
389            partype['pd-rel'].add(name)
390        elif ptype == 'magnetic':
391            partype['fixed-2d'].append(name)
392        elif ptype == 'orientation':
393            partype['pd-2d'].append(name)
394        elif ptype == '':
395            partype['fixed-1d'].append(name)
396            partype['fixed-2d'].append(name)
397        else:
398            raise ValueError("unknown parameter type %r" % ptype)
399        partype[ptype].append(name)
400
401    return partype
402
403def indent(s, depth):
404    """
405    Indent a string of text with *depth* additional spaces on each line.
406    """
407    spaces = " "*depth
408    sep = "\n" + spaces
409    return spaces + sep.join(s.split("\n"))
410
411
412def build_polydispersity_loops(pd_pars):
413    """
414    Build polydispersity loops
415
416    Returns loop opening and loop closing
417    """
418    LOOP_OPEN = """\
419for (int %(name)s_i=0; %(name)s_i < N%(name)s; %(name)s_i++) {
420  const double %(name)s = loops[2*(%(name)s_i%(offset)s)];
421  const double %(name)s_w = loops[2*(%(name)s_i%(offset)s)+1];\
422"""
423    depth = 4
424    offset = ""
425    loop_head = []
426    loop_end = []
427    for name in pd_pars:
428        subst = {'name': name, 'offset': offset}
429        loop_head.append(indent(LOOP_OPEN % subst, depth))
430        loop_end.insert(0, (" "*depth) + "}")
431        offset += '+N' + name
432        depth += 2
433    return "\n".join(loop_head), "\n".join(loop_end)
434
435C_KERNEL_TEMPLATE = None
436def make_model(info):
437    """
438    Generate the code for the kernel defined by info, using source files
439    found in the given search path.
440    """
441    # TODO: need something other than volume to indicate dispersion parameters
442    # No volume normalization despite having a volume parameter.
443    # Thickness is labelled a volume in order to trigger polydispersity.
444    # May want a separate dispersion flag, or perhaps a separate category for
445    # disperse, but not volume.  Volume parameters also use relative values
446    # for the distribution rather than the absolute values used by angular
447    # dispersion.  Need to be careful that necessary parameters are available
448    # for computing volume even if we allow non-disperse volume parameters.
449
450    # Load template
451    global C_KERNEL_TEMPLATE
452    if C_KERNEL_TEMPLATE is None:
453        with open(C_KERNEL_TEMPLATE_PATH) as fid:
454            C_KERNEL_TEMPLATE = fid.read()
455
456    # Load additional sources
457    source = [open(f).read() for f in sources(info)]
458
459    # Prepare defines
460    defines = []
461    partype = info['partype']
462    pd_1d = partype['pd-1d']
463    pd_2d = partype['pd-2d']
464    fixed_1d = partype['fixed-1d']
465    fixed_2d = partype['fixed-1d']
466
467    iq_parameters = [p[0]
468                     for p in info['parameters'][2:] # skip scale, background
469                     if p[0] in set(fixed_1d + pd_1d)]
470    iqxy_parameters = [p[0]
471                       for p in info['parameters'][2:] # skip scale, background
472                       if p[0] in set(fixed_2d + pd_2d)]
473    volume_parameters = [p[0]
474                         for p in info['parameters']
475                         if p[4] == 'volume']
476
477    # Fill in defintions for volume parameters
478    if volume_parameters:
479        defines.append(('VOLUME_PARAMETERS',
480                        ','.join(volume_parameters)))
481        defines.append(('VOLUME_WEIGHT_PRODUCT',
482                        '*'.join(p + '_w' for p in volume_parameters)))
483
484    # Generate form_volume function from body only
485    if info['form_volume'] is not None:
486        if volume_parameters:
487            vol_par_decl = ', '.join('double ' + p for p in volume_parameters)
488        else:
489            vol_par_decl = 'void'
490        defines.append(('VOLUME_PARAMETER_DECLARATIONS',
491                        vol_par_decl))
492        fn = """\
493double form_volume(VOLUME_PARAMETER_DECLARATIONS);
494double form_volume(VOLUME_PARAMETER_DECLARATIONS) {
495    %(body)s
496}
497""" % {'body':info['form_volume']}
498        source.append(fn)
499
500    # Fill in definitions for Iq parameters
501    defines.append(('IQ_KERNEL_NAME', info['name'] + '_Iq'))
502    defines.append(('IQ_PARAMETERS', ', '.join(iq_parameters)))
503    if fixed_1d:
504        defines.append(('IQ_FIXED_PARAMETER_DECLARATIONS',
505                        ', \\\n    '.join('const double %s' % p for p in fixed_1d)))
506    if pd_1d:
507        defines.append(('IQ_WEIGHT_PRODUCT',
508                        '*'.join(p + '_w' for p in pd_1d)))
509        defines.append(('IQ_DISPERSION_LENGTH_DECLARATIONS',
510                        ', \\\n    '.join('const int N%s' % p for p in pd_1d)))
511        defines.append(('IQ_DISPERSION_LENGTH_SUM',
512                        '+'.join('N' + p for p in pd_1d)))
513        open_loops, close_loops = build_polydispersity_loops(pd_1d)
514        defines.append(('IQ_OPEN_LOOPS',
515                        open_loops.replace('\n', ' \\\n')))
516        defines.append(('IQ_CLOSE_LOOPS',
517                        close_loops.replace('\n', ' \\\n')))
518    if info['Iq'] is not None:
519        defines.append(('IQ_PARAMETER_DECLARATIONS',
520                        ', '.join('double ' + p for p in iq_parameters)))
521        fn = """\
522double Iq(double q, IQ_PARAMETER_DECLARATIONS);
523double Iq(double q, IQ_PARAMETER_DECLARATIONS) {
524    %(body)s
525}
526""" % {'body':info['Iq']}
527        source.append(fn)
528
529    # Fill in definitions for Iqxy parameters
530    defines.append(('IQXY_KERNEL_NAME', info['name'] + '_Iqxy'))
531    defines.append(('IQXY_PARAMETERS', ', '.join(iqxy_parameters)))
532    if fixed_2d:
533        defines.append(('IQXY_FIXED_PARAMETER_DECLARATIONS',
534                        ', \\\n    '.join('const double %s' % p for p in fixed_2d)))
535    if pd_2d:
536        defines.append(('IQXY_WEIGHT_PRODUCT',
537                        '*'.join(p + '_w' for p in pd_2d)))
538        defines.append(('IQXY_DISPERSION_LENGTH_DECLARATIONS',
539                        ', \\\n    '.join('const int N%s' % p for p in pd_2d)))
540        defines.append(('IQXY_DISPERSION_LENGTH_SUM',
541                        '+'.join('N' + p for p in pd_2d)))
542        open_loops, close_loops = build_polydispersity_loops(pd_2d)
543        defines.append(('IQXY_OPEN_LOOPS',
544                        open_loops.replace('\n', ' \\\n')))
545        defines.append(('IQXY_CLOSE_LOOPS',
546                        close_loops.replace('\n', ' \\\n')))
547    if info['Iqxy'] is not None:
548        defines.append(('IQXY_PARAMETER_DECLARATIONS',
549                        ', '.join('double ' + p for p in iqxy_parameters)))
550        fn = """\
551double Iqxy(double qx, double qy, IQXY_PARAMETER_DECLARATIONS);
552double Iqxy(double qx, double qy, IQXY_PARAMETER_DECLARATIONS) {
553    %(body)s
554}
555""" % {'body':info['Iqxy']}
556        source.append(fn)
557
558    # Need to know if we have a theta parameter for Iqxy; it is not there
559    # for the magnetic sphere model, for example, which has a magnetic
560    # orientation but no shape orientation.
561    if 'theta' in pd_2d:
562        defines.append(('IQXY_HAS_THETA', '1'))
563
564    #for d in defines: print(d)
565    DEFINES = '\n'.join('#define %s %s' % (k, v) for k, v in defines)
566    SOURCES = '\n\n'.join(source)
567    return C_KERNEL_TEMPLATE % {
568        'DEFINES':DEFINES,
569        'SOURCES':SOURCES,
570        }
571
572def make_info(kernel_module):
573    """
574    Interpret the model definition file, categorizing the parameters.
575    """
576    #print(kernelfile)
577    category = getattr(kernel_module, 'category', None)
578    parameters = COMMON_PARAMETERS + kernel_module.parameters
579    # Default the demo parameters to the starting values for the individual
580    # parameters if an explicit demo parameter set has not been specified.
581    demo_parameters = getattr(kernel_module, 'demo', None)
582    if demo_parameters is None:
583        demo_parameters = dict((p[0],p[2]) for p in parameters)
584    filename = abspath(kernel_module.__file__)
585    kernel_id = splitext(basename(filename))[0]
586    name = getattr(kernel_module, 'name', None)
587    if name is None:
588        name = " ".join(w.capitalize() for w in kernel_id.split('_'))
589    info = dict(
590        id = kernel_id,  # string used to load the kernel
591        filename=abspath(kernel_module.__file__),
592        name=name,
593        title=kernel_module.title,
594        description=kernel_module.description,
595        category=category,
596        parameters=parameters,
597        demo=demo_parameters,
598        source=getattr(kernel_module, 'source', []),
599        oldname=kernel_module.oldname,
600        oldpars=kernel_module.oldpars,
601        )
602    # Fill in attributes which default to None
603    info.update((k, getattr(kernel_module, k, None))
604                for k in ('ER', 'VR', 'form_volume', 'Iq', 'Iqxy'))
605    # Fill in the derived attributes
606    info['limits'] = dict((p[0], p[3]) for p in info['parameters'])
607    info['partype'] = categorize_parameters(info['parameters'])
608    info['defaults'] = dict((p[0], p[2]) for p in info['parameters'])
609    return info
610
611def make(kernel_module):
612    """
613    Build an OpenCL/ctypes function from the definition in *kernel_module*.
614
615    The module can be loaded with a normal python import statement if you
616    know which module you need, or with __import__('sasmodels.model.'+name)
617    if the name is in a string.
618    """
619    info = make_info(kernel_module)
620    # Assume if one part of the kernel is python then all parts are.
621    source = make_model(info) if not callable(info['Iq']) else None
622    return source, info
623
624section_marker = re.compile(r'\A(?P<first>[%s])(?P=first)*\Z'
625                            %re.escape(string.punctuation))
626def _convert_section_titles_to_boldface(lines):
627    prior = None
628    for line in lines:
629        if prior is None:
630            prior = line
631        elif section_marker.match(line):
632            if len(line) >= len(prior):
633                yield "".join( ("**",prior,"**") )
634                prior = None
635            else:
636                yield prior
637                prior = line
638        else:
639            yield prior
640            prior = line
641    if prior is not None:
642        yield prior
643
644def convert_section_titles_to_boldface(string):
645    return "\n".join(_convert_section_titles_to_boldface(string.split('\n')))
646
647def doc(kernel_module):
648    """
649    Return the documentation for the model.
650    """
651    Iq_units = "The returned value is scaled to units of |cm^-1| |sr^-1|, absolute scale."
652    Sq_units = "The returned value is a dimensionless structure factor, $S(q)$."
653    info = make_info(kernel_module)
654    is_Sq = ("structure-factor" in info['category'])
655    #docs = kernel_module.__doc__
656    docs = convert_section_titles_to_boldface(kernel_module.__doc__)
657    subst = dict(id=info['id'].replace('_', '-'),
658                 name=info['name'],
659                 title=info['title'],
660                 parameters=make_partable(info['parameters']),
661                 returns=Sq_units if is_Sq else Iq_units,
662                 docs=docs)
663    return DOC_HEADER % subst
664
665
666
667def demo_time():
668    from .models import cylinder
669    import datetime
670    tic = datetime.datetime.now()
671    make(cylinder)
672    toc = (datetime.datetime.now() - tic).total_seconds()
673    print("time: %g"%toc)
674
675def main():
676    if len(sys.argv) <= 1:
677        print("usage: python -m sasmodels.generate modelname")
678    else:
679        name = sys.argv[1]
680        import sasmodels.models
681        __import__('sasmodels.models.' + name)
682        model = getattr(sasmodels.models, name)
683        source, _ = make(model)
684        print(source)
685
686if __name__ == "__main__":
687    main()
Note: See TracBrowser for help on using the repository browser.