source: sasmodels/sasmodels/generate.py @ 562506e

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 562506e was 562506e, checked in by Piotr Rozyczko <piotr.rozyczko@…>, 8 years ago

Temporay (?) fix to enable proper build

  • Property mode set to 100644
File size: 25.4 KB
Line 
1"""
2SAS model constructor.
3
4Small angle scattering models are defined by a set of kernel functions:
5
6    *Iq(q, p1, p2, ...)* returns the scattering at q for a form with
7    particular dimensions averaged over all orientations.
8
9    *Iqxy(qx, qy, p1, p2, ...)* returns the scattering at qx, qy for a form
10    with particular dimensions for a single orientation.
11
12    *Imagnetic(qx, qy, result[], p1, p2, ...)* returns the scattering for the
13    polarized neutron spin states (up-up, up-down, down-up, down-down) for
14    a form with particular dimensions for a single orientation.
15
16    *form_volume(p1, p2, ...)* returns the volume of the form with particular
17    dimension, or 1.0 if no volume normalization is required.
18
19    *ER(p1, p2, ...)* returns the effective radius of the form with
20    particular dimensions.
21
22    *VR(p1, p2, ...)* returns the volume ratio for core-shell style forms.
23
24    #define INVALID(v) (expr)  returns False if v.parameter is invalid
25    for some parameter or other (e.g., v.bell_radius < v.radius).  If
26    necessary, the expression can call a function.
27
28These functions are defined in a kernel module .py script and an associated
29set of .c files.  The model constructor will use them to create models with
30polydispersity across volume and orientation parameters, and provide
31scale and background parameters for each model.
32
33*Iq*, *Iqxy*, *Imagnetic* and *form_volume* should be stylized C-99
34functions written for OpenCL.  All functions need prototype declarations
35even if the are defined before they are used.  OpenCL does not support
36*#include* preprocessor directives, so instead the list of includes needs
37to be given as part of the metadata in the kernel module definition.
38The included files should be listed using a path relative to the kernel
39module, or if using "lib/file.c" if it is one of the standard includes
40provided with the sasmodels source.  The includes need to be listed in
41order so that functions are defined before they are used.
42
43Floating point values should be declared as *double*.  For single precision
44calculations, *double* will be replaced by *float*.  The single precision
45conversion will also tag floating point constants with "f" to make them
46single precision constants.  When using integral values in floating point
47expressions, they should be expressed as floating point values by including
48a decimal point.  This includes 0., 1. and 2.
49
50OpenCL has a *sincos* function which can improve performance when both
51the *sin* and *cos* values are needed for a particular argument.  Since
52this function does not exist in C99, all use of *sincos* should be
53replaced by the macro *SINCOS(value, sn, cn)* where *sn* and *cn* are
54previously declared *double* variables.  When compiled for systems without
55OpenCL, *SINCOS* will be replaced by *sin* and *cos* calls.   If *value* is
56an expression, it will appear twice in this case; whether or not it will be
57evaluated twice depends on the quality of the compiler.
58
59If the input parameters are invalid, the scattering calculator should
60return a negative number. Particularly with polydispersity, there are
61some sets of shape parameters which lead to nonsensical forms, such
62as a capped cylinder where the cap radius is smaller than the
63cylinder radius.  The polydispersity calculation will ignore these points,
64effectively chopping the parameter weight distributions at the boundary
65of the infeasible region.  The resulting scattering will be set to
66background.  This will work correctly even when polydispersity is off.
67
68*ER* and *VR* are python functions which operate on parameter vectors.
69The constructor code will generate the necessary vectors for computing
70them with the desired polydispersity.
71The kernel module must set variables defining the kernel meta data:
72
73    *id* is an implicit variable formed from the filename.  It will be
74    a valid python identifier, and will be used as the reference into
75    the html documentation, with '_' replaced by '-'.
76
77    *name* is the model name as displayed to the user.  If it is missing,
78    it will be constructed from the id.
79
80    *title* is a short description of the model, suitable for a tool tip,
81    or a one line model summary in a table of models.
82
83    *description* is an extended description of the model to be displayed
84    while the model parameters are being edited.
85
86    *parameters* is the list of parameters.  Parameters in the kernel
87    functions must appear in the same order as they appear in the
88    parameters list.  Two additional parameters, *scale* and *background*
89    are added to the beginning of the parameter list.  They will show up
90    in the documentation as model parameters, but they are never sent to
91    the kernel functions.  Note that *effect_radius* and *volfraction*
92    must occur first in structure factor calculations.
93
94    *category* is the default category for the model.  The category is
95    two level structure, with the form "group:section", indicating where
96    in the manual the model will be located.  Models are alphabetical
97    within their section.
98
99    *source* is the list of C-99 source files that must be joined to
100    create the OpenCL kernel functions.  The files defining the functions
101    need to be listed before the files which use the functions.
102
103    *ER* is a python function defining the effective radius.  If it is
104    not present, the effective radius is 0.
105
106    *VR* is a python function defining the volume ratio.  If it is not
107    present, the volume ratio is 1.
108
109    *form_volume*, *Iq*, *Iqxy*, *Imagnetic* are strings containing the
110    C source code for the body of the volume, Iq, and Iqxy functions
111    respectively.  These can also be defined in the last source file.
112
113    *Iq* and *Iqxy* also be instead be python functions defining the
114    kernel.  If they are marked as *Iq.vectorized = True* then the
115    kernel is passed the entire *q* vector at once, otherwise it is
116    passed values one *q* at a time.  The performance improvement of
117    this step is significant.
118
119    *demo* is a dictionary of parameter=value defining a set of
120    parameters to use by default when *compare* is called.  Any
121    parameter not set in *demo* gets the initial value from the
122    parameter list.  *demo* is mostly needed to set the default
123    polydispersity values for tests.
124
125A :class:`modelinfo.ModelInfo` structure is constructed from the kernel meta
126data and returned to the caller.
127
128The doc string at the start of the kernel module will be used to
129construct the model documentation web pages.  Embedded figures should
130appear in the subdirectory "img" beside the model definition, and tagged
131with the kernel module name to avoid collision with other models.  Some
132file systems are case-sensitive, so only use lower case characters for
133file names and extensions.
134
135Code follows the C99 standard with the following extensions and conditions::
136
137    M_PI_180 = pi/180
138    M_4PI_3 = 4pi/3
139    square(x) = x*x
140    cube(x) = x*x*x
141    sinc(x) = sin(x)/x, with sin(0)/0 -> 1
142    all double precision constants must include the decimal point
143    all double declarations may be converted to half, float, or long double
144    FLOAT_SIZE is the number of bytes in the converted variables
145
146:func:`load_kernel_module` loads the model definition file and
147:modelinfo:`make_model_info` parses it. :func:`make_source`
148converts C-based model definitions to C source code, including the
149polydispersity integral.  :func:`model_sources` returns the list of
150source files the model depends on, and :func:`timestamp` returns
151the latest time stamp amongst the source files (so you can check if
152the model needs to be rebuilt).
153
154The function :func:`make_doc` extracts the doc string and adds the
155parameter table to the top.  *make_figure* in *sasmodels/doc/genmodel*
156creates the default figure for the model.  [These two sets of code
157should mignrate into docs.py so docs can be updated in one place].
158"""
159from __future__ import print_function
160
161# TODO: determine which functions are useful outside of generate
162#__all__ = ["model_info", "make_doc", "make_source", "convert_type"]
163
164import sys
165from os.path import abspath, dirname, join as joinpath, exists, isdir, getmtime
166import re
167import string
168import warnings
169
170import numpy as np  # type: ignore
171
172from .modelinfo import Parameter
173from .custom import load_custom_kernel_module
174
175try:
176    from typing import Tuple, Sequence, Iterator, Dict
177    from .modelinfo import ModelInfo
178except ImportError:
179    pass
180
181def get_data_path(external_dir, target_file):
182    path = abspath(dirname(__file__))
183    if exists(joinpath(path, target_file)):
184        return path
185
186    # check next to exe/zip file
187    exepath = dirname(sys.executable)
188    path = joinpath(exepath, external_dir)
189    if exists(joinpath(path, target_file)):
190        return path
191
192    # check in py2app Contents/Resources
193    path = joinpath(exepath, '..', 'Resources', external_dir)
194    if exists(joinpath(path, target_file)):
195        return abspath(path)
196
197    raise RuntimeError('Could not find '+joinpath(external_dir, target_file))
198
199EXTERNAL_DIR = 'sasmodels-data'
200DATA_PATH = get_data_path(EXTERNAL_DIR, 'kernel_template.c')
201MODEL_PATH = joinpath(DATA_PATH, 'models')
202
203F16 = np.dtype('float16')
204F32 = np.dtype('float32')
205F64 = np.dtype('float64')
206try:  # CRUFT: older numpy does not support float128
207    F128 = np.dtype('float128')
208except TypeError:
209    F128 = None
210
211# Conversion from units defined in the parameter table for each model
212# to units displayed in the sphinx documentation.
213RST_UNITS = {
214    "Ang": "|Ang|",
215    "1/Ang": "|Ang^-1|",
216    "1/Ang^2": "|Ang^-2|",
217    "1e-6/Ang^2": "|1e-6Ang^-2|",
218    "degrees": "degree",
219    "1/cm": "|cm^-1|",
220    "Ang/cm": "|Ang*cm^-1|",
221    "g/cm3": "|g/cm^3|",
222    "mg/m2": "|mg/m^2|",
223    "": "None",
224    }
225
226# Headers for the parameters tables in th sphinx documentation
227PARTABLE_HEADERS = [
228    "Parameter",
229    "Description",
230    "Units",
231    "Default value",
232    ]
233
234# Minimum width for a default value (this is shorter than the column header
235# width, so will be ignored).
236PARTABLE_VALUE_WIDTH = 10
237
238# Documentation header for the module, giving the model name, its short
239# description and its parameter table.  The remainder of the doc comes
240# from the module docstring.
241DOC_HEADER = """.. _%(id)s:
242
243%(name)s
244=======================================================
245
246%(title)s
247
248%(parameters)s
249
250%(returns)s
251
252%(docs)s
253"""
254
255
256def format_units(units):
257    # type: (str) -> str
258    """
259    Convert units into ReStructured Text format.
260    """
261    return "string" if isinstance(units, list) else RST_UNITS.get(units, units)
262
263
264def make_partable(pars):
265    # type: (List[Parameter]) -> str
266    """
267    Generate the parameter table to include in the sphinx documentation.
268    """
269    column_widths = [
270        max(len(p.name) for p in pars),
271        max(len(p.description) for p in pars),
272        max(len(format_units(p.units)) for p in pars),
273        PARTABLE_VALUE_WIDTH,
274        ]
275    column_widths = [max(w, len(h))
276                     for w, h in zip(column_widths, PARTABLE_HEADERS)]
277
278    sep = " ".join("="*w for w in column_widths)
279    lines = [
280        sep,
281        " ".join("%-*s" % (w, h)
282                 for w, h in zip(column_widths, PARTABLE_HEADERS)),
283        sep,
284        ]
285    for p in pars:
286        lines.append(" ".join([
287            "%-*s" % (column_widths[0], p.name),
288            "%-*s" % (column_widths[1], p.description),
289            "%-*s" % (column_widths[2], format_units(p.units)),
290            "%*g" % (column_widths[3], p.default),
291            ]))
292    lines.append(sep)
293    return "\n".join(lines)
294
295
296def _search(search_path, filename):
297    # type: (List[str], str) -> str
298    """
299    Find *filename* in *search_path*.
300
301    Raises ValueError if file does not exist.
302    """
303    for path in search_path:
304        target = joinpath(path, filename)
305        if exists(target):
306            return target
307    raise ValueError("%r not found in %s" % (filename, search_path))
308
309
310def model_sources(model_info):
311    # type: (ModelInfo) -> List[str]
312    """
313    Return a list of the sources file paths for the module.
314    """
315    search_path = [dirname(model_info.filename), MODEL_PATH]
316    return [_search(search_path, f) for f in model_info.source]
317
318
319def timestamp(model_info):
320    # type: (ModelInfo) -> int
321    """
322    Return a timestamp for the model corresponding to the most recently
323    changed file or dependency.
324
325    Note that this does not look at the time stamps for the OpenCL header
326    information since that need not trigger a recompile of the DLL.
327    """
328    source_files = (model_sources(model_info)
329                    + model_templates()
330                    + [model_info.filename])
331    newest = max(getmtime(f) for f in source_files)
332    return newest
333
334
335def model_templates():
336    # type: () -> List[str]
337    # TODO: fails DRY; templates appear two places.
338    # should instead have model_info contain a list of paths
339    # Note: kernel_iq.cl is not on this list because changing it need not
340    # trigger a recompile of the dll.
341    return [joinpath(DATA_PATH, filename)
342            for filename in ('kernel_header.c', 'kernel_iq.c')]
343
344
345def convert_type(source, dtype):
346    # type: (str, np.dtype) -> str
347    """
348    Convert code from double precision to the desired type.
349
350    Floating point constants are tagged with 'f' for single precision or 'L'
351    for long double precision.
352    """
353    if dtype == F16:
354        fbytes = 2
355        source = _convert_type(source, "half", "f")
356    elif dtype == F32:
357        fbytes = 4
358        source = _convert_type(source, "float", "f")
359    elif dtype == F64:
360        fbytes = 8
361        # no need to convert if it is already double
362    elif dtype == F128:
363        fbytes = 16
364        source = _convert_type(source, "long double", "L")
365    else:
366        raise ValueError("Unexpected dtype in source conversion: %s" % dtype)
367    return ("#define FLOAT_SIZE %d\n" % fbytes)+source
368
369
370def _convert_type(source, type_name, constant_flag):
371    # type: (str, str, str) -> str
372    """
373    Replace 'double' with *type_name* in *source*, tagging floating point
374    constants with *constant_flag*.
375    """
376    # Convert double keyword to float/long double/half.
377    # Accept an 'n' # parameter for vector # values, where n is 2, 4, 8 or 16.
378    # Assume complex numbers are represented as cdouble which is typedef'd
379    # to double2.
380    source = re.sub(r'(^|[^a-zA-Z0-9_]c?)double(([248]|16)?($|[^a-zA-Z0-9_]))',
381                    r'\1%s\2'%type_name, source)
382    # Convert floating point constants to single by adding 'f' to the end,
383    # or long double with an 'L' suffix.  OS/X complains if you don't do this.
384    source = re.sub(r'[^a-zA-Z_](\d*[.]\d+|\d+[.]\d*)([eE][+-]?\d+)?',
385                    r'\g<0>%s'%constant_flag, source)
386    return source
387
388
389def kernel_name(model_info, is_2d):
390    # type: (ModelInfo, bool) -> str
391    """
392    Name of the exported kernel symbol.
393    """
394    return model_info.name + "_" + ("Iqxy" if is_2d else "Iq")
395
396
397def indent(s, depth):
398    # type: (str, int) -> str
399    """
400    Indent a string of text with *depth* additional spaces on each line.
401    """
402    spaces = " "*depth
403    sep = "\n" + spaces
404    return spaces + sep.join(s.split("\n"))
405
406
407_template_cache = {}  # type: Dict[str, Tuple[int, str, str]]
408def load_template(filename):
409    # type: (str) -> str
410    path = joinpath(DATA_PATH, filename)
411    mtime = getmtime(path)
412    if filename not in _template_cache or mtime > _template_cache[filename][0]:
413        with open(path) as fid:
414            _template_cache[filename] = (mtime, fid.read(), path)
415    return _template_cache[filename][1], path
416
417
418_FN_TEMPLATE = """\
419double %(name)s(%(pars)s);
420double %(name)s(%(pars)s) {
421#line %(line)d "%(filename)s"
422    %(body)s
423}
424
425"""
426def _gen_fn(name, pars, body, filename, line):
427    # type: (str, List[Parameter], str, str, int) -> str
428    """
429    Generate a function given pars and body.
430
431    Returns the following string::
432
433         double fn(double a, double b, ...);
434         double fn(double a, double b, ...) {
435             ....
436         }
437    """
438    par_decl = ', '.join(p.as_function_argument() for p in pars) if pars else 'void'
439    return _FN_TEMPLATE % {
440        'name': name, 'pars': par_decl, 'body': body,
441        'filename': filename.replace('\\', '\\\\'), 'line': line,
442    }
443
444
445def _call_pars(prefix, pars):
446    # type: (str, List[Parameter]) -> List[str]
447    """
448    Return a list of *prefix.parameter* from parameter items.
449    """
450    return [p.as_call_reference(prefix) for p in pars]
451
452
453# type in IQXY pattern could be single, float, double, long double, ...
454_IQXY_PATTERN = re.compile("^((inline|static) )? *([a-z ]+ )? *Iqxy *([(]|$)",
455                           flags=re.MULTILINE)
456def _have_Iqxy(sources):
457    # type: (List[str]) -> bool
458    """
459    Return true if any file defines Iqxy.
460
461    Note this is not a C parser, and so can be easily confused by
462    non-standard syntax.  Also, it will incorrectly identify the following
463    as having Iqxy::
464
465        /*
466        double Iqxy(qx, qy, ...) { ... fill this in later ... }
467        */
468
469    If you want to comment out an Iqxy function, use // on the front of the
470    line instead.
471    """
472    for path, code in sources:
473        if _IQXY_PATTERN.search(code):
474            return True
475    else:
476        return False
477
478
479def _add_source(source, code, path):
480    """
481    Add a file to the list of source code chunks, tagged with path and line.
482    """
483    path = path.replace('\\', '\\\\')
484    source.append('#line 1 "%s"' % path)
485    source.append(code)
486
487
488def make_source(model_info):
489    # type: (ModelInfo) -> str
490    """
491    Generate the OpenCL/ctypes kernel from the module info.
492
493    Uses source files found in the given search path.  Returns None if this
494    is a pure python model, with no C source components.
495    """
496    if callable(model_info.Iq):
497        #raise ValueError("can't compile python model")
498        return None
499
500    # TODO: need something other than volume to indicate dispersion parameters
501    # No volume normalization despite having a volume parameter.
502    # Thickness is labelled a volume in order to trigger polydispersity.
503    # May want a separate dispersion flag, or perhaps a separate category for
504    # disperse, but not volume.  Volume parameters also use relative values
505    # for the distribution rather than the absolute values used by angular
506    # dispersion.  Need to be careful that necessary parameters are available
507    # for computing volume even if we allow non-disperse volume parameters.
508
509    partable = model_info.parameters
510
511    # Load templates and user code
512    kernel_header = load_template('kernel_header.c')
513    dll_code = load_template('kernel_iq.c')
514    ocl_code = load_template('kernel_iq.cl')
515    #ocl_code = load_template('kernel_iq_local.cl')
516    user_code = [(f, open(f).read()) for f in model_sources(model_info)]
517
518    # Build initial sources
519    source = []
520    _add_source(source, *kernel_header)
521    for path, code in user_code:
522        _add_source(source, code, path)
523
524    # Make parameters for q, qx, qy so that we can use them in declarations
525    q, qx, qy = [Parameter(name=v) for v in ('q', 'qx', 'qy')]
526    # Generate form_volume function, etc. from body only
527    if isinstance(model_info.form_volume, str):
528        pars = partable.form_volume_parameters
529        source.append(_gen_fn('form_volume', pars, model_info.form_volume,
530                              model_info.filename, model_info._form_volume_line))
531    if isinstance(model_info.Iq, str):
532        pars = [q] + partable.iq_parameters
533        source.append(_gen_fn('Iq', pars, model_info.Iq,
534                              model_info.filename, model_info._Iq_line))
535    if isinstance(model_info.Iqxy, str):
536        pars = [qx, qy] + partable.iqxy_parameters
537        source.append(_gen_fn('Iqxy', pars, model_info.Iqxy,
538                              model_info.filename, model_info._Iqxy_line))
539
540    # Define the parameter table
541    source.append("#define PARAMETER_TABLE \\")
542    source.append("\\\n".join(p.as_definition()
543                              for p in partable.kernel_parameters))
544
545    # Define the function calls
546    if partable.form_volume_parameters:
547        refs = _call_pars("_v.", partable.form_volume_parameters)
548        call_volume = "#define CALL_VOLUME(_v) form_volume(%s)"%(",".join(refs))
549    else:
550        # Model doesn't have volume.  We could make the kernel run a little
551        # faster by not using/transferring the volume normalizations, but
552        # the ifdef's reduce readability more than is worthwhile.
553        call_volume = "#define CALL_VOLUME(v) 1.0"
554    source.append(call_volume)
555
556    refs = ["_q[_i]"] + _call_pars("_v.", partable.iq_parameters)
557    call_iq = "#define CALL_IQ(_q,_i,_v) Iq(%s)" % (",".join(refs))
558    if _have_Iqxy(user_code):
559        # Call 2D model
560        refs = ["q[2*_i]", "q[2*_i+1]"] + _call_pars("_v.", partable.iqxy_parameters)
561        call_iqxy = "#define CALL_IQ(_q,_i,_v) Iqxy(%s)" % (",".join(refs))
562    else:
563        # Call 1D model with sqrt(qx^2 + qy^2)
564        warnings.warn("Creating Iqxy = Iq(sqrt(qx^2 + qy^2))")
565        # still defined:: refs = ["q[i]"] + _call_pars("v", iq_parameters)
566        pars_sqrt = ["sqrt(_q[2*_i]*_q[2*_i]+_q[2*_i+1]*_q[2*_i+1])"] + refs[1:]
567        call_iqxy = "#define CALL_IQ(_q,_i,_v) Iq(%s)" % (",".join(pars_sqrt))
568
569    # Fill in definitions for numbers of parameters
570    source.append("#define MAX_PD %s"%partable.max_pd)
571    source.append("#define NPARS %d"%partable.npars)
572
573    # TODO: allow mixed python/opencl kernels?
574
575    source.append("#if defined(USE_OPENCL)")
576    source.extend(_add_kernels(ocl_code[0], call_iq, call_iqxy, model_info.name))
577    source.append("#else /* !USE_OPENCL */")
578    source.extend(_add_kernels(dll_code[0], call_iq, call_iqxy, model_info.name))
579    source.append("#endif /* !USE_OPENCL */")
580    return '\n'.join(source)
581
582
583def _add_kernels(kernel_code, call_iq, call_iqxy, name):
584    # type: (str, str, str, str) -> List[str]
585    source = [
586        # define the Iq kernel
587        "#define KERNEL_NAME %s_Iq"%name,
588        call_iq,
589        kernel_code,
590        "#undef CALL_IQ",
591        "#undef KERNEL_NAME",
592
593        # define the Iqxy kernel from the same source with different #defines
594        "#define KERNEL_NAME %s_Iqxy"%name,
595        call_iqxy,
596        kernel_code,
597        "#undef CALL_IQ",
598        "#undef KERNEL_NAME",
599    ]
600    return source
601
602
603def load_kernel_module(model_name):
604    # type: (str) -> module
605    """
606    Return the kernel module named in *model_name*.
607
608    If the name ends in *.py* then load it as a custom model using
609    :func:`sasmodels.custom.load_custom_kernel_module`, otherwise
610    load it from :mod:`sasmodels.models`.
611    """
612    if model_name.endswith('.py'):
613        kernel_module = load_custom_kernel_module(model_name)
614    else:
615        from sasmodels import models
616        __import__('sasmodels.models.'+model_name)
617        kernel_module = getattr(models, model_name, None)
618    return kernel_module
619
620
621section_marker = re.compile(r'\A(?P<first>[%s])(?P=first)*\Z'
622                            % re.escape(string.punctuation))
623def _convert_section_titles_to_boldface(lines):
624    # type: (Sequence[str]) -> Iterator[str]
625    """
626    Do the actual work of identifying and converting section headings.
627    """
628    prior = None
629    for line in lines:
630        if prior is None:
631            prior = line
632        elif section_marker.match(line):
633            if len(line) >= len(prior):
634                yield "".join(("**", prior, "**"))
635                prior = None
636            else:
637                yield prior
638                prior = line
639        else:
640            yield prior
641            prior = line
642    if prior is not None:
643        yield prior
644
645
646def convert_section_titles_to_boldface(s):
647    # type: (str) -> str
648    """
649    Use explicit bold-face rather than section headings so that the table of
650    contents is not polluted with section names from the model documentation.
651
652    Sections are identified as the title line followed by a line of punctuation
653    at least as long as the title line.
654    """
655    return "\n".join(_convert_section_titles_to_boldface(s.split('\n')))
656
657
658def make_doc(model_info):
659    # type: (ModelInfo) -> str
660    """
661    Return the documentation for the model.
662    """
663    Iq_units = "The returned value is scaled to units of |cm^-1| |sr^-1|, absolute scale."
664    Sq_units = "The returned value is a dimensionless structure factor, $S(q)$."
665    docs = convert_section_titles_to_boldface(model_info.docs)
666    pars = make_partable(model_info.parameters.COMMON
667                         + model_info.parameters.kernel_parameters)
668    subst = dict(id=model_info.id.replace('_', '-'),
669                 name=model_info.name,
670                 title=model_info.title,
671                 parameters=pars,
672                 returns=Sq_units if model_info.structure_factor else Iq_units,
673                 docs=docs)
674    return DOC_HEADER % subst
675
676
677def make_html(model_info):
678    """
679    Convert model docs directly to html.
680    """
681    from . import rst2html
682    return rst2html.convert(make_doc(model_info), title=model_info['name'])
683
684def demo_time():
685    # type: () -> None
686    """
687    Show how long it takes to process a model.
688    """
689    import datetime
690    from .modelinfo import make_model_info
691    from .models import cylinder
692
693    tic = datetime.datetime.now()
694    make_source(make_model_info(cylinder))
695    toc = (datetime.datetime.now() - tic).total_seconds()
696    print("time: %g"%toc)
697
698
699def main():
700    # type: () -> None
701    """
702    Program which prints the source produced by the model.
703    """
704    import sys
705    from .modelinfo import make_model_info
706
707    if len(sys.argv) <= 1:
708        print("usage: python -m sasmodels.generate modelname")
709    else:
710        name = sys.argv[1]
711        kernel_module = load_kernel_module(name)
712        model_info = make_model_info(kernel_module)
713        source = make_source(model_info)
714        print(source)
715
716
717if __name__ == "__main__":
718    main()
Note: See TracBrowser for help on using the repository browser.