source: sasmodels/sasmodels/gen.py @ 994d77f

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 994d77f was 994d77f, checked in by Paul Kienzle <pkienzle@…>, 9 years ago

Convert double to float rather than using real

  • Property mode set to 100644
File size: 25.0 KB
Line 
1"""
2SAS model constructor.
3
4Small angle scattering models are defined by a set of kernel functions:
5
6    *Iq(q, p1, p2, ...)* returns the scattering at q for a form with
7    particular dimensions averaged over all orientations.
8
9    *Iqxy(qx, qy, p1, p2, ...)* returns the scattering at qx,qy for a form
10    with particular dimensions for a single orientation.
11
12    *Imagnetic(qx, qy, result[], p1, p2, ...)* returns the scattering for the
13    polarized neutron spin states (up-up, up-down, down-up, down-down) for
14    a form with particular dimensions for a single orientation.
15
16    *form_volume(p1, p2, ...)* returns the volume of the form with particular
17    dimension.
18
19    *ER(p1, p2, ...)* returns the effective radius of the form with
20    particular dimensions.
21
22    *VR(p1, p2, ...)* returns the volume ratio for core-shell style forms.
23
24These functions are defined in a kernel module .py script and an associated
25set of .c files.  The model constructor will use them to create models with
26polydispersity across volume and orientation parameters, and provide
27scale and background parameters for each model.
28
29*Iq*, *Iqxy*, *Imagnetic* and *form_volume* should be stylized C-99
30functions written for OpenCL.  All functions need prototype declarations
31even if the are defined before they are used.  OpenCL does not support
32*#include* preprocessor directives, so instead the list of includes needs
33to be given as part of the metadata in the kernel module definition.
34The included files should be listed using a path relative to the kernel
35module, or if using "lib/file.c" if it is one of the standard includes
36provided with the sasmodels source.  The includes need to be listed in
37order so that functions are defined before they are used.
38
39Floating point values should be declared as *double*.  For single precision
40calculations, *double* will be replaced by *float*.  The single precision
41conversion will also tag floating point constants with "f" to make them
42single precision constants.  When using integral values in floating point
43expressions, they should be expressed as floating point values by including
44a decimal point.  This includes 0., 1. and 2.
45
46OpenCL has a *sincos* function which can improve performance when both
47the *sin* and *cos* values are needed for a particular argument.  Since
48this function does not exist in C99, all use of *sincos* should be
49replaced by the macro *SINCOS(value,sn,cn)* where *sn* and *cn* are
50previously declared *double* variables.  When compiled for systems without
51OpenCL, *SINCOS* will be replaced by *sin* and *cos* calls.   If *value* is
52an expression, it will appear twice in this case; whether or not it will be
53evaluated twice depends on the quality of the compiler.
54
55If the input parameters are invalid, the scattering calculator should
56return a negative number. Particularly with polydispersity, there are
57some sets of shape parameters which lead to nonsensical forms, such
58as a capped cylinder where the cap radius is smaller than the
59cylinder radius.  The polydispersity calculation will ignore these points,
60effectively chopping the parameter weight distributions at the boundary
61of the infeasible region.  The resulting scattering will be set to
62background.  This will work correctly even when polydispersity is off.
63
64*ER* and *VR* are python functions which operate on parameter vectors.
65The constructor code will generate the necessary vectors for computing
66them with the desired polydispersity.
67
68The available kernel parameters are defined as a list, with each parameter
69defined as a sublist with the following elements:
70
71    *name* is the name that will be used in the call to the kernel
72    function and the name that will be displayed to the user.  Names
73    should be lower case, with words separated by underscore.  If
74    acronyms are used, the whole acronym should be upper case.
75
76    *units* should be one of *degrees* for angles, *Ang* for lengths,
77    *1e-6/Ang^2* for SLDs.
78
79    *default value* will be the initial value for  the model when it
80    is selected, or when an initial value is not otherwise specified.
81
82    [*lb*, *ub*] are the hard limits on the parameter value, used to limit
83    the polydispersity density function.  In the fit, the parameter limits
84    given to the fit are the limits  on the central value of the parameter.
85    If there is polydispersity, it will evaluate parameter values outside
86    the fit limits, but not outside the hard limits specified in the model.
87    If there are no limits, use +/-inf imported from numpy.
88
89    *type* indicates how the parameter will be used.  "volume" parameters
90    will be used in all functions.  "orientation" parameters will be used
91    in *Iqxy* and *Imagnetic*.  "magnetic* parameters will be used in
92    *Imagnetic* only.  If *type* is the empty string, the parameter will
93    be used in all of *Iq*, *Iqxy* and *Imagnetic*.
94
95    *description* is a short description of the parameter.  This will
96    be displayed in the parameter table and used as a tool tip for the
97    parameter value in the user interface.
98
99The kernel module must set variables defining the kernel meta data:
100
101    *name* is the model name
102
103    *title* is a short description of the model, suitable for a tool tip,
104    or a one line model summary in a table of models.
105
106    *description* is an extended description of the model to be displayed
107    while the model parameters are being edited.
108
109    *parameters* is the list of parameters.  Parameters in the kernel
110    functions must appear in the same order as they appear in the
111    parameters list.  Two additional parameters, *scale* and *background*
112    are added to the beginning of the parameter list.  They will show up
113    in the documentation as model parameters, but they are never sent to
114    the kernel functions.
115
116    *source* is the list of C-99 source files that must be joined to
117    create the OpenCL kernel functions.  The files defining the functions
118    need to be listed before the files which use the functions.
119
120    *ER* is a python function defining the effective radius.  If it is
121    not present, the effective radius is 0.
122
123    *VR* is a python function defining the volume ratio.  If it is not
124    present, the volume ratio is 1.
125
126    *form_volume*, *Iq*, *Iqxy*, *Imagnetic* are strings containing the
127    C source code for the body of the volume, Iq, and Iqxy functions
128    respectively.  These can also be defined in the last source file.
129
130An *info* dictionary is constructed from the kernel meta data and
131returned to the caller.  It includes the additional fields
132
133
134The model evaluator, function call sequence consists of q inputs and the return vector,
135followed by the loop value/weight vector, followed by the values for
136the non-polydisperse parameters, followed by the lengths of the
137polydispersity loops.  To construct the call for 1D models, the
138categories *fixed-1d* and *pd-1d* list the names of the parameters
139of the non-polydisperse and the polydisperse parameters respectively.
140Similarly, *fixed-2d* and *pd-2d* provide parameter names for 2D models.
141The *pd-rel* category is a set of those parameters which give
142polydispersitiy as a portion of the value (so a 10% length dispersity
143would use a polydispersity value of 0.1) rather than absolute
144dispersity such as an angle plus or minus 15 degrees.
145
146The *volume* category lists the volume parameters in order for calls
147to volume within the kernel (used for volume normalization) and for
148calls to ER and VR for effective radius and volume ratio respectively.
149
150The *orientation* and *magnetic* categories list the orientation and
151magnetic parameters.  These are used by the sasview interface.  The
152blank category is for parameters such as scale which don't have any
153other marking.
154
155The doc string at the start of the kernel module will be used to
156construct the model documentation web pages.  Embedded figures should
157appear in the subdirectory "img" beside the model definition, and tagged
158with the kernel module name to avoid collision with other models.  Some
159file systems are case-sensitive, so only use lower case characters for
160file names and extensions.
161
162
163The function :func:`make` loads the metadata from the module and returns
164the kernel source.  The function :func:`doc` extracts the doc string
165and adds the parameter table to the top.  The function :func:`sources`
166returns a list of files required by the model.
167"""
168
169# TODO: identify model files which have changed since loading and reload them.
170
171__all__ = ["make, doc", "sources", "use_single"]
172
173import sys
174import os
175import os.path
176import re
177
178import numpy as np
179
180F64 = np.dtype('float64')
181F32 = np.dtype('float32')
182
183# Scale and background, which are parameters common to every form factor
184COMMON_PARAMETERS = [
185    [ "scale", "", 1, [0, np.inf], "", "Source intensity" ],
186    [ "background", "1/cm", 0, [0, np.inf], "", "Source background" ],
187    ]
188
189
190# Conversion from units defined in the parameter table for each model
191# to units displayed in the sphinx documentation.
192RST_UNITS = {
193    "Ang": "|Ang|",
194    "1/Ang^2": "|Ang^-2|",
195    "1e-6/Ang^2": "|1e-6Ang^-2|",
196    "degrees": "degree",
197    "1/cm": "|cm^-1|",
198    "": "None",
199    }
200
201# Headers for the parameters tables in th sphinx documentation
202PARTABLE_HEADERS = [
203    "Parameter",
204    "Description",
205    "Units",
206    "Default value",
207    ]
208
209# Minimum width for a default value (this is shorter than the column header
210# width, so will be ignored).
211PARTABLE_VALUE_WIDTH = 10
212
213# Header included before every kernel.
214# This makes sure that the appropriate math constants are defined, and does
215# whatever is required to make the kernel compile as pure C rather than
216# as an OpenCL kernel.
217KERNEL_HEADER = """\
218// GENERATED CODE --- DO NOT EDIT ---
219// Code is produced by sasmodels.gen from sasmodels/models/MODEL.c
220
221#ifdef __OPENCL_VERSION__
222# define USE_OPENCL
223#endif
224
225// If opencl is not available, then we are compiling a C function
226// Note: if using a C++ compiler, then define kernel as extern "C"
227#ifndef USE_OPENCL
228#  include <math.h>
229#  define global
230#  define local
231#  define constant const
232#  define kernel
233#  define SINCOS(angle,svar,cvar) do {svar=sin(angle);cvar=cos(angle);} while (0)
234#  define powr(a,b) pow(a,b)
235#else
236#  ifdef USE_SINCOS
237#    define SINCOS(angle,svar,cvar) svar=sincos(angle,&cvar)
238#  else
239#    define SINCOS(angle,svar,cvar) do {svar=sin(angle);cvar=cos(angle);} while (0)
240#  endif
241#endif
242
243// Standard mathematical constants:
244//   M_E, M_LOG2E, M_LOG10E, M_LN2, M_LN10, M_PI, M_PI_2=pi/2, M_PI_4=pi/4,
245//   M_1_PI=1/pi, M_2_PI=2/pi, M_2_SQRTPI=2/sqrt(pi), SQRT2, SQRT1_2=sqrt(1/2)
246// OpenCL defines M_constant_F for float constants, and nothing if double
247// is not enabled on the card, which is why these constants may be missing
248#ifndef M_PI
249#  define M_PI 3.141592653589793
250#endif
251#ifndef M_PI_2
252#  define M_PI_2 1.570796326794897
253#endif
254#ifndef M_PI_4
255#  define M_PI_4 0.7853981633974483
256#endif
257
258// Non-standard pi/180, used for converting between degrees and radians
259#ifndef M_PI_180
260#  define M_PI_180 0.017453292519943295
261#endif
262"""
263
264
265# The I(q) kernel and the I(qx, qy) kernel have one and two q parameters
266# respectively, so the template builder will need to do extra work to
267# declare, initialize and pass the q parameters.
268KERNEL_1D = {
269    'fn': "Iq",
270    'q_par_decl': "global const double *q,",
271    'qinit': "const double qi = q[i];",
272    'qcall': "qi",
273    'qwork': ["q"],
274    }
275
276KERNEL_2D = {
277    'fn': "Iqxy",
278    'q_par_decl': "global const double *qx,\n    global const double *qy,",
279    'qinit': "const double qxi = qx[i];\n    const double qyi = qy[i];",
280    'qcall': "qxi, qyi",
281    'qwork': ["qx", "qy"],
282    }
283
284# Generic kernel template for the polydispersity loop.
285# This defines the opencl kernel that is available to the host.  The same
286# structure is used for Iq and Iqxy kernels, so extra flexibility is needed
287# for q parameters.  The polydispersity loop is built elsewhere and
288# substituted into this template.
289KERNEL_TEMPLATE = """\
290kernel void %(name)s(
291    %(q_par_decl)s
292    global double *result,
293#ifdef USE_OPENCL
294    global double *loops_g,
295#else
296    const int Nq,
297#endif
298    local double *loops,
299    const double cutoff,
300    %(par_decl)s
301    )
302{
303#ifdef USE_OPENCL
304  // copy loops info to local memory
305  event_t e = async_work_group_copy(loops, loops_g, (%(pd_length)s)*2, 0);
306  wait_group_events(1, &e);
307
308  int i = get_global_id(0);
309  int Nq = get_global_size(0);
310#endif
311
312#ifdef USE_OPENCL
313  if (i < Nq)
314#else
315  #pragma omp parallel for
316  for (int i=0; i < Nq; i++)
317#endif
318  {
319    %(qinit)s
320    double ret=0.0, norm=0.0;
321    double vol=0.0, norm_vol=0.0;
322%(loops)s
323    if (vol*norm_vol != 0.0) {
324      ret *= norm_vol/vol;
325    }
326    result[i] = scale*ret/norm+background;
327  }
328}
329"""
330
331# Polydispersity loop level.
332# This pulls the parameter value and weight from the looping vector in order
333# in preperation for a nested loop.
334LOOP_OPEN="""\
335for (int %(name)s_i=0; %(name)s_i < N%(name)s; %(name)s_i++) {
336  const double %(name)s = loops[2*(%(name)s_i%(offset)s)];
337  const double %(name)s_w = loops[2*(%(name)s_i%(offset)s)+1];\
338"""
339
340# Polydispersity loop body.
341# This computes the weight, and if it is sufficient, calls the scattering
342# function and adds it to the total.  If there is a volume normalization,
343# it will also be added here.
344LOOP_BODY="""\
345const double weight = %(weight_product)s;
346if (weight > cutoff) {
347  const double I = %(fn)s(%(qcall)s, %(pcall)s);
348  if (I>=0.0) { // scattering cannot be negative
349    ret += weight*I%(sasview_spherical)s;
350    norm += weight;
351    %(volume_norm)s
352  }
353  //else { printf("exclude qx,qy,I:%%g,%%g,%%g\\n",%(qcall)s,I); }
354}
355//else { printf("exclude weight:%%g\\n",weight); }\
356"""
357
358# Use this when integrating over orientation
359SPHERICAL_CORRECTION="""\
360// Correction factor for spherical integration p(theta) I(q) sin(theta) dtheta
361double spherical_correction = (Ntheta>1 ? fabs(sin(M_PI_180*theta)) : 1.0);\
362"""
363# Use this to reproduce sasview behaviour
364SASVIEW_SPHERICAL_CORRECTION="""\
365// Correction factor for spherical integration p(theta) I(q) sin(theta) dtheta
366double spherical_correction = (Ntheta>1 ? fabs(cos(M_PI_180*theta))*M_PI_2 : 1.0);\
367"""
368
369# Volume normalization.
370# If there are "volume" polydispersity parameters, then these will be used
371# to call the form_volume function from the user supplied kernel, and accumulate
372# a normalized weight.
373VOLUME_NORM="""const double vol_weight = %(weight)s;
374    vol += vol_weight*form_volume(%(pars)s);
375    norm_vol += vol_weight;\
376"""
377
378# functions defined as strings in the .py module
379WORK_FUNCTION="""\
380double %(name)s(%(pars)s);
381double %(name)s(%(pars)s)
382{
383%(body)s
384}\
385"""
386
387# Documentation header for the module, giving the model name, its short
388# description and its parameter table.  The remainder of the doc comes
389# from the module docstring.
390DOC_HEADER=""".. _%(name)s:
391
392%(label)s
393=======================================================
394
395%(title)s
396
397%(parameters)s
398
399The returned value is scaled to units of |cm^-1|.
400
401%(docs)s
402"""
403
404def indent(s, depth):
405    """
406    Indent a string of text with *depth* additional spaces on each line.
407    """
408    spaces = " "*depth
409    sep = "\n"+spaces
410    return spaces + sep.join(s.split("\n"))
411
412
413def kernel_name(info, is_2D):
414    """
415    Name of the exported kernel symbol.
416    """
417    return info['name'] + "_" + ("Iqxy" if is_2D else "Iq")
418
419
420def use_single(source):
421    """
422    Convert code from double precision to single precision.
423    """
424    source = re.sub(r'(^|[^a-zA-Z0-9_])double($|[^a-zA-Z0-9_])',
425                    r'\1float\2', source)
426    source = re.sub(r'[^a-zA-Z_](\d*[.]\d+|\d+[.]\d*)([eE][+-]?\d+)?',
427                    r'\g<0>f', source)
428    return source
429
430
431def make_kernel(info, is_2D):
432    """
433    Build a kernel call from metadata supplied by the user.
434
435    *info* is the json object defined in the kernel file.
436
437    *form* is either "Iq" or "Iqxy".
438
439    This does not create a complete OpenCL kernel source, only the top
440    level kernel call with polydispersity and a call to the appropriate
441    Iq or Iqxy function.
442    """
443
444    # If we are building the Iqxy kernel, we need to propagate qx,qy
445    # parameters, otherwise we can
446    dim = "2d" if is_2D else "1d"
447    fixed_pars = info['partype']['fixed-'+dim]
448    pd_pars = info['partype']['pd-'+dim]
449    vol_pars = info['partype']['volume']
450    q_pars = KERNEL_2D if is_2D else KERNEL_1D
451    fn = q_pars['fn']
452
453    # Build polydispersity loops
454    depth = 4
455    offset = ""
456    loop_head = []
457    loop_end = []
458    for name in pd_pars:
459        subst = { 'name': name, 'offset': offset }
460        loop_head.append(indent(LOOP_OPEN%subst, depth))
461        loop_end.insert(0, (" "*depth) + "}")
462        offset += '+N'+name
463        depth += 2
464
465    # The volume parameters in the inner loop are used to call the volume()
466    # function in the kernel, with the parameters defined in vol_pars and the
467    # weight product defined in weight.  If there are no volume parameters,
468    # then there will be no volume normalization.
469    if vol_pars:
470        subst = {
471            'weight': "*".join(p+"_w" for p in vol_pars),
472            'pars': ", ".join(vol_pars),
473            }
474        volume_norm = VOLUME_NORM%subst
475    else:
476        volume_norm = ""
477
478    # Define the inner loop function call
479    # The parameters to the f(q,p1,p2...) call should occur in the same
480    # order as given in the parameter info structure.  This may be different
481    # from the parameter order in the call to the kernel since the kernel
482    # call places all fixed parameters before all polydisperse parameters.
483    fq_pars = [p[0] for p in info['parameters'][len(COMMON_PARAMETERS):]
484               if p[0] in set(fixed_pars+pd_pars)]
485    if False and "theta" in pd_pars:
486        spherical_correction = [indent(SPHERICAL_CORRECTION, depth)]
487        weights = [p+"_w" for p in pd_pars]+['spherical_correction']
488        sasview_spherical = ""
489    elif True and "theta" in pd_pars:
490        spherical_correction = [indent(SASVIEW_SPHERICAL_CORRECTION,depth)]
491        weights = [p+"_w" for p in pd_pars]
492        sasview_spherical = "*spherical_correction"
493    else:
494        spherical_correction = []
495        weights = [p+"_w" for p in pd_pars]
496        sasview_spherical = ""
497    subst = {
498        'weight_product': "*".join(weights),
499        'volume_norm': volume_norm,
500        'fn': fn,
501        'qcall': q_pars['qcall'],
502        'pcall': ", ".join(fq_pars), # skip scale and background
503        'sasview_spherical': sasview_spherical,
504        }
505    loop_body = [indent(LOOP_BODY%subst, depth)]
506    loops = "\n".join(loop_head+spherical_correction+loop_body+loop_end)
507
508    # declarations for non-pd followed by pd pars
509    # e.g.,
510    #     const double sld,
511    #     const int Nradius
512    fixed_par_decl = ",\n    ".join("const double %s"%p for p in fixed_pars)
513    pd_par_decl = ",\n    ".join("const int N%s"%p for p in pd_pars)
514    if fixed_par_decl and pd_par_decl:
515        par_decl = ",\n    ".join((fixed_par_decl, pd_par_decl))
516    elif fixed_par_decl:
517        par_decl = fixed_par_decl
518    else:
519        par_decl = pd_par_decl
520
521    # Finally, put the pieces together in the kernel.
522    subst = {
523        # kernel name is, e.g., cylinder_Iq
524        'name': kernel_name(info, is_2D),
525        # to declare, e.g., global double q[],
526        'q_par_decl': q_pars['q_par_decl'],
527        # to declare, e.g., double sld, int Nradius, int Nlength
528        'par_decl': par_decl,
529        # to copy global to local pd pars we need, e.g., Nradius+Nlength
530        'pd_length': "+".join('N'+p for p in pd_pars),
531        # the q initializers, e.g., double qi = q[i];
532        'qinit': q_pars['qinit'],
533        # the actual polydispersity loop
534        'loops': loops,
535        }
536    kernel = KERNEL_TEMPLATE%subst
537
538    # If the working function is defined in the kernel metadata as a
539    # string, translate the string to an actual function definition
540    # and put it before the kernel.
541    if info[fn]:
542        subst = {
543            'name': fn,
544            'pars': ", ".join("double "+p for p in q_pars['qwork']+fq_pars),
545            'body': info[fn],
546            }
547        kernel = "\n".join((WORK_FUNCTION%subst, kernel))
548    return kernel
549
550def make_partable(pars):
551    """
552    Generate the parameter table to include in the sphinx documentation.
553    """
554    pars = COMMON_PARAMETERS + pars
555    column_widths = [
556        max(len(p[0]) for p in pars),
557        max(len(p[-1]) for p in pars),
558        max(len(RST_UNITS[p[1]]) for p in pars),
559        PARTABLE_VALUE_WIDTH,
560        ]
561    column_widths = [max(w, len(h))
562                     for w,h in zip(column_widths, PARTABLE_HEADERS)]
563
564    sep = " ".join("="*w for w in column_widths)
565    lines = [
566        sep,
567        " ".join("%-*s"%(w,h) for w,h in zip(column_widths, PARTABLE_HEADERS)),
568        sep,
569        ]
570    for p in pars:
571        lines.append(" ".join([
572            "%-*s"%(column_widths[0],p[0]),
573            "%-*s"%(column_widths[1],p[-1]),
574            "%-*s"%(column_widths[2],RST_UNITS[p[1]]),
575            "%*g"%(column_widths[3],p[2]),
576            ]))
577    lines.append(sep)
578    return "\n".join(lines)
579
580def _search(search_path, filename):
581    """
582    Find *filename* in *search_path*.
583
584    Raises ValueError if file does not exist.
585    """
586    for path in search_path:
587        target = os.path.join(path, filename)
588        if os.path.exists(target):
589            return target
590    raise ValueError("%r not found in %s"%(filename, search_path))
591
592def sources(info):
593    """
594    Return a list of the sources file paths for the module.
595    """
596    from os.path import abspath, dirname, join as joinpath
597    search_path = [ dirname(info['filename']),
598                    abspath(joinpath(dirname(__file__),'models')) ]
599    return [_search(search_path, f) for f in info['source']]
600
601def make_model(info):
602    """
603    Generate the code for the kernel defined by info, using source files
604    found in the given search path.
605    """
606    source = [open(f).read() for f in sources(info)]
607    # If the form volume is defined as a string, then wrap it in a
608    # function definition and place it after the external sources but
609    # before the kernel functions.  If the kernel functions are strings,
610    # they will be translated in the make_kernel call.
611    if info['form_volume']:
612        subst = {
613            'name': "form_volume",
614            'pars': ", ".join("double "+p for p in info['partype']['volume']),
615            'body': info['form_volume'],
616            }
617        source.append(WORK_FUNCTION%subst)
618    kernel_Iq = make_kernel(info, is_2D=False)
619    kernel_Iqxy = make_kernel(info, is_2D=True)
620    kernel = "\n\n".join([KERNEL_HEADER]+source+[kernel_Iq, kernel_Iqxy])
621    return kernel
622
623def categorize_parameters(pars):
624    """
625    Build parameter categories out of the the parameter definitions.
626
627    Returns a dictionary of categories.
628    """
629    partype = {
630        'volume': [], 'orientation': [], 'magnetic': [], '': [],
631        'fixed-1d': [], 'fixed-2d': [], 'pd-1d': [], 'pd-2d': [],
632        'pd-rel': set(),
633    }
634
635    for p in pars:
636        name,ptype = p[0],p[4]
637        if ptype == 'volume':
638            partype['pd-1d'].append(name)
639            partype['pd-2d'].append(name)
640            partype['pd-rel'].add(name)
641        elif ptype == 'magnetic':
642            partype['fixed-2d'].append(name)
643        elif ptype == 'orientation':
644            partype['pd-2d'].append(name)
645        elif ptype == '':
646            partype['fixed-1d'].append(name)
647            partype['fixed-2d'].append(name)
648        else:
649            raise ValueError("unknown parameter type %r"%ptype)
650        partype[ptype].append(name)
651
652    return partype
653
654def make(kernel_module):
655    """
656    Build an OpenCL/ctypes function from the definition in *kernel_module*.
657
658    The module can be loaded with a normal python import statement if you
659    know which module you need, or with __import__('sasmodels.model.'+name)
660    if the name is in a string.
661    """
662    # TODO: allow Iq and Iqxy to be defined in python
663    from os.path import abspath
664    #print kernelfile
665    info = dict(
666        filename = abspath(kernel_module.__file__),
667        name = kernel_module.name,
668        title = kernel_module.title,
669        description = kernel_module.description,
670        parameters = COMMON_PARAMETERS + kernel_module.parameters,
671        source = getattr(kernel_module, 'source', []),
672        )
673    # Fill in attributes which default to None
674    info.update((k,getattr(kernel_module, k, None))
675                for k in ('ER', 'VR', 'form_volume', 'Iq', 'Iqxy'))
676    # Fill in the derived attributes
677    info['limits'] = dict((p[0],p[3]) for p in info['parameters'])
678    info['partype'] = categorize_parameters(info['parameters'])
679
680    source = make_model(info)
681
682    return source, info
683
684def doc(kernel_module):
685    """
686    Return the documentation for the model.
687    """
688    subst = dict(name=kernel_module.name.replace('_','-'),
689                 label=" ".join(kernel_module.name.split('_')).capitalize(),
690                 title=kernel_module.title,
691                 parameters=make_partable(kernel_module.parameters),
692                 docs=kernel_module.__doc__)
693    return DOC_HEADER%subst
694
695
696
697def demo_time():
698    import datetime
699    tic = datetime.datetime.now()
700    toc = lambda: (datetime.datetime.now()-tic).total_seconds()
701    path = os.path.dirname("__file__")
702    doc, c = make_model(os.path.join(path, "models", "cylinder.c"))
703    print "time:",toc()
704
705def demo():
706    from os.path import join as joinpath, dirname
707    c, info, doc = make_model(joinpath(dirname(__file__), "models", "cylinder.c"))
708    #print doc
709    #print c
710
711if __name__ == "__main__":
712    demo()
Note: See TracBrowser for help on using the repository browser.