1 | """ |
---|
2 | Class interface to the model calculator. |
---|
3 | |
---|
4 | Calling a model is somewhat non-trivial since the functions called depend |
---|
5 | on the data type. For 1D data the *Iq* kernel needs to be called, for |
---|
6 | 2D data the *Iqxy* kernel needs to be called, and for SESANS data the |
---|
7 | *Iq* kernel needs to be called followed by a Hankel transform. Before |
---|
8 | the kernel is called an appropriate *q* calculation vector needs to be |
---|
9 | constructed. This is not the simple *q* vector where you have measured |
---|
10 | the data since the resolution calculation will require values beyond the |
---|
11 | range of the measured data. After the calculation the resolution calculator |
---|
12 | must be called to return the predicted value for each measured data point. |
---|
13 | |
---|
14 | :class:`DirectModel` is a callable object that takes *parameter=value* |
---|
15 | keyword arguments and returns the appropriate theory values for the data. |
---|
16 | |
---|
17 | :class:`DataMixin` does the real work of interpreting the data and calling |
---|
18 | the model calculator. This is used by :class:`DirectModel`, which uses |
---|
19 | direct parameter values and by :class:`bumps_model.Experiment` which wraps |
---|
20 | the parameter values in boxes so that the user can set fitting ranges, etc. |
---|
21 | on the individual parameters and send the model to the Bumps optimizers. |
---|
22 | """ |
---|
23 | from __future__ import print_function |
---|
24 | |
---|
25 | import numpy as np # type: ignore |
---|
26 | |
---|
27 | # TODO: fix sesans module |
---|
28 | from . import sesans # type: ignore |
---|
29 | from . import weights |
---|
30 | from . import resolution |
---|
31 | from . import resolution2d |
---|
32 | from .details import make_kernel_args, dispersion_mesh |
---|
33 | |
---|
34 | # pylint: disable=unused-import |
---|
35 | try: |
---|
36 | from typing import Optional, Dict, Tuple |
---|
37 | except ImportError: |
---|
38 | pass |
---|
39 | else: |
---|
40 | from .data import Data |
---|
41 | from .kernel import Kernel, KernelModel |
---|
42 | from .modelinfo import Parameter, ParameterSet |
---|
43 | # pylint: enable=unused-import |
---|
44 | |
---|
45 | def call_kernel(calculator, pars, cutoff=0., mono=False): |
---|
46 | # type: (Kernel, ParameterSet, float, bool) -> np.ndarray |
---|
47 | """ |
---|
48 | Call *kernel* returned from *model.make_kernel* with parameters *pars*. |
---|
49 | |
---|
50 | *cutoff* is the limiting value for the product of dispersion weights used |
---|
51 | to perform the multidimensional dispersion calculation more quickly at a |
---|
52 | slight cost to accuracy. The default value of *cutoff=0* integrates over |
---|
53 | the entire dispersion cube. Using *cutoff=1e-5* can be 50% faster, but |
---|
54 | with an error of about 1%, which is usually less than the measurement |
---|
55 | uncertainty. |
---|
56 | |
---|
57 | *mono* is True if polydispersity should be set to none on all parameters. |
---|
58 | """ |
---|
59 | mesh = get_mesh(calculator.info, pars, dim=calculator.dim, mono=mono) |
---|
60 | #print("pars", list(zip(*mesh))[0]) |
---|
61 | call_details, values, is_magnetic = make_kernel_args(calculator, mesh) |
---|
62 | #print("values:", values) |
---|
63 | return calculator(call_details, values, cutoff, is_magnetic) |
---|
64 | |
---|
65 | def call_ER(model_info, pars): |
---|
66 | # type: (ModelInfo, ParameterSet) -> float |
---|
67 | """ |
---|
68 | Call the model ER function using *values*. |
---|
69 | |
---|
70 | *model_info* is either *model.info* if you have a loaded model, |
---|
71 | or *kernel.info* if you have a model kernel prepared for evaluation. |
---|
72 | """ |
---|
73 | if model_info.ER is None: |
---|
74 | return 1.0 |
---|
75 | elif not model_info.parameters.form_volume_parameters: |
---|
76 | # handle the case where ER is provided but model is not polydisperse |
---|
77 | return model_info.ER() |
---|
78 | else: |
---|
79 | value, weight = _vol_pars(model_info, pars) |
---|
80 | individual_radii = model_info.ER(*value) |
---|
81 | return np.sum(weight*individual_radii) / np.sum(weight) |
---|
82 | |
---|
83 | |
---|
84 | def call_VR(model_info, pars): |
---|
85 | # type: (ModelInfo, ParameterSet) -> float |
---|
86 | """ |
---|
87 | Call the model VR function using *pars*. |
---|
88 | |
---|
89 | *model_info* is either *model.info* if you have a loaded model, |
---|
90 | or *kernel.info* if you have a model kernel prepared for evaluation. |
---|
91 | """ |
---|
92 | if model_info.VR is None: |
---|
93 | return 1.0 |
---|
94 | elif not model_info.parameters.form_volume_parameters: |
---|
95 | # handle the case where ER is provided but model is not polydisperse |
---|
96 | return model_info.VR() |
---|
97 | else: |
---|
98 | value, weight = _vol_pars(model_info, pars) |
---|
99 | whole, part = model_info.VR(*value) |
---|
100 | return np.sum(weight*part)/np.sum(weight*whole) |
---|
101 | |
---|
102 | |
---|
103 | def call_profile(model_info, **pars): |
---|
104 | # type: (ModelInfo, ...) -> Tuple[np.ndarray, np.ndarray, Tuple[str, str]] |
---|
105 | """ |
---|
106 | Returns the profile *x, y, (xlabel, ylabel)* representing the model. |
---|
107 | """ |
---|
108 | args = {} |
---|
109 | for p in model_info.parameters.kernel_parameters: |
---|
110 | if p.length > 1: |
---|
111 | value = np.array([pars.get(p.id+str(j), p.default) |
---|
112 | for j in range(1, p.length+1)]) |
---|
113 | else: |
---|
114 | value = pars.get(p.id, p.default) |
---|
115 | args[p.id] = value |
---|
116 | x, y = model_info.profile(**args) |
---|
117 | return x, y, model_info.profile_axes |
---|
118 | |
---|
119 | def get_mesh(model_info, values, dim='1d', mono=False): |
---|
120 | # type: (ModelInfo, Dict[str, float], str, bool) -> List[Tuple[float, np.ndarray, np.ndarry]] |
---|
121 | """ |
---|
122 | Retrieve the dispersity mesh described by the parameter set. |
---|
123 | |
---|
124 | Returns a list of *(value, dispersity, weights)* with one tuple for each |
---|
125 | parameter in the model call parameters. Inactive parameters return the |
---|
126 | default value with a weight of 1.0. |
---|
127 | """ |
---|
128 | parameters = model_info.parameters |
---|
129 | if mono: |
---|
130 | active = lambda name: False |
---|
131 | elif dim == '1d': |
---|
132 | active = lambda name: name in parameters.pd_1d |
---|
133 | elif dim == '2d': |
---|
134 | active = lambda name: name in parameters.pd_2d |
---|
135 | else: |
---|
136 | active = lambda name: True |
---|
137 | |
---|
138 | #print("pars",[p.id for p in parameters.call_parameters]) |
---|
139 | mesh = [_get_par_weights(p, values, active(p.name)) |
---|
140 | for p in parameters.call_parameters] |
---|
141 | return mesh |
---|
142 | |
---|
143 | |
---|
144 | def _get_par_weights(parameter, values, active=True): |
---|
145 | # type: (Parameter, Dict[str, float]) -> Tuple[float, np.ndarray, np.ndarray] |
---|
146 | """ |
---|
147 | Generate the distribution for parameter *name* given the parameter values |
---|
148 | in *pars*. |
---|
149 | |
---|
150 | Uses "name", "name_pd", "name_pd_type", "name_pd_n", "name_pd_sigma" |
---|
151 | from the *pars* dictionary for parameter value and parameter dispersion. |
---|
152 | """ |
---|
153 | value = float(values.get(parameter.name, parameter.default)) |
---|
154 | npts = values.get(parameter.name+'_pd_n', 0) |
---|
155 | width = values.get(parameter.name+'_pd', 0.0) |
---|
156 | relative = parameter.relative_pd |
---|
157 | if npts == 0 or width == 0.0 or not active: |
---|
158 | # Note: orientation parameters have the viewing angle as the parameter |
---|
159 | # value and the jitter in the distribution, so be sure to set the |
---|
160 | # empty pd for orientation parameters to 0. |
---|
161 | pd = [value if relative or not parameter.polydisperse else 0.0], [1.0] |
---|
162 | else: |
---|
163 | limits = parameter.limits |
---|
164 | disperser = values.get(parameter.name+'_pd_type', 'gaussian') |
---|
165 | nsigma = values.get(parameter.name+'_pd_nsigma', 3.0) |
---|
166 | pd = weights.get_weights(disperser, npts, width, nsigma, |
---|
167 | value, limits, relative) |
---|
168 | return value, pd[0], pd[1] |
---|
169 | |
---|
170 | |
---|
171 | def _vol_pars(model_info, values): |
---|
172 | # type: (ModelInfo, ParameterSet) -> Tuple[np.ndarray, np.ndarray] |
---|
173 | vol_pars = [_get_par_weights(p, values) |
---|
174 | for p in model_info.parameters.call_parameters |
---|
175 | if p.type == 'volume'] |
---|
176 | #import pylab; pylab.plot(vol_pars[0][0],vol_pars[0][1]); pylab.show() |
---|
177 | dispersity, weight = dispersion_mesh(model_info, vol_pars) |
---|
178 | return dispersity, weight |
---|
179 | |
---|
180 | |
---|
181 | def _make_sesans_transform(data): |
---|
182 | from sas.sascalc.data_util.nxsunit import Converter |
---|
183 | |
---|
184 | # Pre-compute the Hankel matrix (H) |
---|
185 | SElength = Converter(data._xunit)(data.x, "A") |
---|
186 | |
---|
187 | theta_max = Converter("radians")(data.sample.zacceptance)[0] |
---|
188 | q_max = 2 * np.pi / np.max(data.source.wavelength) * np.sin(theta_max) |
---|
189 | zaccept = Converter("1/A")(q_max, "1/" + data.source.wavelength_unit), |
---|
190 | |
---|
191 | Rmax = 10000000 |
---|
192 | hankel = sesans.SesansTransform(data.x, SElength, |
---|
193 | data.source.wavelength, |
---|
194 | zaccept, Rmax) |
---|
195 | return hankel |
---|
196 | |
---|
197 | |
---|
198 | class DataMixin(object): |
---|
199 | """ |
---|
200 | DataMixin captures the common aspects of evaluating a SAS model for a |
---|
201 | particular data set, including calculating Iq and evaluating the |
---|
202 | resolution function. It is used in particular by :class:`DirectModel`, |
---|
203 | which evaluates a SAS model parameters as key word arguments to the |
---|
204 | calculator method, and by :class:`bumps_model.Experiment`, which wraps the |
---|
205 | model and data for use with the Bumps fitting engine. It is not |
---|
206 | currently used by :class:`sasview_model.SasviewModel` since this will |
---|
207 | require a number of changes to SasView before we can do it. |
---|
208 | |
---|
209 | :meth:`_interpret_data` initializes the data structures necessary |
---|
210 | to manage the calculations. This sets attributes in the child class |
---|
211 | such as *data_type* and *resolution*. |
---|
212 | |
---|
213 | :meth:`_calc_theory` evaluates the model at the given control values. |
---|
214 | |
---|
215 | :meth:`_set_data` sets the intensity data in the data object, |
---|
216 | possibly with random noise added. This is useful for simulating a |
---|
217 | dataset with the results from :meth:`_calc_theory`. |
---|
218 | """ |
---|
219 | def _interpret_data(self, data, model): |
---|
220 | # type: (Data, KernelModel) -> None |
---|
221 | # pylint: disable=attribute-defined-outside-init |
---|
222 | |
---|
223 | self._data = data |
---|
224 | self._model = model |
---|
225 | |
---|
226 | # interpret data |
---|
227 | if hasattr(data, 'isSesans') and data.isSesans: |
---|
228 | self.data_type = 'sesans' |
---|
229 | elif hasattr(data, 'qx_data'): |
---|
230 | self.data_type = 'Iqxy' |
---|
231 | elif getattr(data, 'oriented', False): |
---|
232 | self.data_type = 'Iq-oriented' |
---|
233 | else: |
---|
234 | self.data_type = 'Iq' |
---|
235 | |
---|
236 | if self.data_type == 'sesans': |
---|
237 | res = _make_sesans_transform(data) |
---|
238 | index = slice(None, None) |
---|
239 | if data.y is not None: |
---|
240 | Iq, dIq = data.y, data.dy |
---|
241 | else: |
---|
242 | Iq, dIq = None, None |
---|
243 | #self._theory = np.zeros_like(q) |
---|
244 | q_vectors = [res.q_calc] |
---|
245 | elif self.data_type == 'Iqxy': |
---|
246 | #if not model.info.parameters.has_2d: |
---|
247 | # raise ValueError("not 2D without orientation or magnetic parameters") |
---|
248 | q = np.sqrt(data.qx_data**2 + data.qy_data**2) |
---|
249 | qmin = getattr(data, 'qmin', 1e-16) |
---|
250 | qmax = getattr(data, 'qmax', np.inf) |
---|
251 | accuracy = getattr(data, 'accuracy', 'Low') |
---|
252 | index = (data.mask == 0) & (q >= qmin) & (q <= qmax) |
---|
253 | if data.data is not None: |
---|
254 | index &= ~np.isnan(data.data) |
---|
255 | Iq = data.data[index] |
---|
256 | dIq = data.err_data[index] |
---|
257 | else: |
---|
258 | Iq, dIq = None, None |
---|
259 | res = resolution2d.Pinhole2D(data=data, index=index, |
---|
260 | nsigma=3.0, accuracy=accuracy) |
---|
261 | #self._theory = np.zeros_like(self.Iq) |
---|
262 | q_vectors = res.q_calc |
---|
263 | elif self.data_type == 'Iq': |
---|
264 | index = (data.x >= data.qmin) & (data.x <= data.qmax) |
---|
265 | mask = getattr(data, 'mask', None) |
---|
266 | if mask is not None: |
---|
267 | index &= (mask == 0) |
---|
268 | if data.y is not None: |
---|
269 | index &= ~np.isnan(data.y) |
---|
270 | Iq = data.y[index] |
---|
271 | dIq = data.dy[index] |
---|
272 | else: |
---|
273 | Iq, dIq = None, None |
---|
274 | if getattr(data, 'dx', None) is not None: |
---|
275 | q, dq = data.x[index], data.dx[index] |
---|
276 | if (dq > 0).any(): |
---|
277 | res = resolution.Pinhole1D(q, dq) |
---|
278 | else: |
---|
279 | res = resolution.Perfect1D(q) |
---|
280 | elif (getattr(data, 'dxl', None) is not None |
---|
281 | and getattr(data, 'dxw', None) is not None): |
---|
282 | res = resolution.Slit1D(data.x[index], |
---|
283 | qx_width=data.dxl[index], |
---|
284 | qy_width=data.dxw[index]) |
---|
285 | else: |
---|
286 | res = resolution.Perfect1D(data.x[index]) |
---|
287 | |
---|
288 | #self._theory = np.zeros_like(self.Iq) |
---|
289 | q_vectors = [res.q_calc] |
---|
290 | elif self.data_type == 'Iq-oriented': |
---|
291 | index = (data.x >= data.qmin) & (data.x <= data.qmax) |
---|
292 | if data.y is not None: |
---|
293 | index &= ~np.isnan(data.y) |
---|
294 | Iq = data.y[index] |
---|
295 | dIq = data.dy[index] |
---|
296 | else: |
---|
297 | Iq, dIq = None, None |
---|
298 | if (getattr(data, 'dxl', None) is None |
---|
299 | or getattr(data, 'dxw', None) is None): |
---|
300 | raise ValueError("oriented sample with 1D data needs slit resolution") |
---|
301 | |
---|
302 | res = resolution2d.Slit2D(data.x[index], |
---|
303 | qx_width=data.dxw[index], |
---|
304 | qy_width=data.dxl[index]) |
---|
305 | q_vectors = res.q_calc |
---|
306 | else: |
---|
307 | raise ValueError("Unknown data type") # never gets here |
---|
308 | |
---|
309 | # Remember function inputs so we can delay loading the function and |
---|
310 | # so we can save/restore state |
---|
311 | self._kernel_inputs = q_vectors |
---|
312 | self._kernel = None |
---|
313 | self.Iq, self.dIq, self.index = Iq, dIq, index |
---|
314 | self.resolution = res |
---|
315 | |
---|
316 | def _set_data(self, Iq, noise=None): |
---|
317 | # type: (np.ndarray, Optional[float]) -> None |
---|
318 | # pylint: disable=attribute-defined-outside-init |
---|
319 | if noise is not None: |
---|
320 | self.dIq = Iq*noise*0.01 |
---|
321 | dy = self.dIq |
---|
322 | y = Iq + np.random.randn(*dy.shape) * dy |
---|
323 | self.Iq = y |
---|
324 | if self.data_type in ('Iq', 'Iq-oriented'): |
---|
325 | if self._data.y is None: |
---|
326 | self._data.y = np.empty(len(self._data.x), 'd') |
---|
327 | if self._data.dy is None: |
---|
328 | self._data.dy = np.empty(len(self._data.x), 'd') |
---|
329 | self._data.dy[self.index] = dy |
---|
330 | self._data.y[self.index] = y |
---|
331 | elif self.data_type == 'Iqxy': |
---|
332 | if self._data.data is None: |
---|
333 | self._data.data = np.empty_like(self._data.qx_data, 'd') |
---|
334 | if self._data.err_data is None: |
---|
335 | self._data.err_data = np.empty_like(self._data.qx_data, 'd') |
---|
336 | self._data.data[self.index] = y |
---|
337 | self._data.err_data[self.index] = dy |
---|
338 | elif self.data_type == 'sesans': |
---|
339 | if self._data.y is None: |
---|
340 | self._data.y = np.empty(len(self._data.x), 'd') |
---|
341 | self._data.y[self.index] = y |
---|
342 | else: |
---|
343 | raise ValueError("Unknown model") |
---|
344 | |
---|
345 | def _calc_theory(self, pars, cutoff=0.0): |
---|
346 | # type: (ParameterSet, float) -> np.ndarray |
---|
347 | if self._kernel is None: |
---|
348 | self._kernel = self._model.make_kernel(self._kernel_inputs) |
---|
349 | |
---|
350 | # Need to pull background out of resolution for multiple scattering |
---|
351 | default_background = self._model.info.parameters.common_parameters[1].default |
---|
352 | background = pars.get('background', default_background) |
---|
353 | pars = pars.copy() |
---|
354 | pars['background'] = 0. |
---|
355 | |
---|
356 | Iq_calc = call_kernel(self._kernel, pars, cutoff=cutoff) |
---|
357 | # Storing the calculated Iq values so that they can be plotted. |
---|
358 | # Only applies to oriented USANS data for now. |
---|
359 | # TODO: extend plotting of calculate Iq to other measurement types |
---|
360 | # TODO: refactor so we don't store the result in the model |
---|
361 | self.Iq_calc = Iq_calc |
---|
362 | result = self.resolution.apply(Iq_calc) |
---|
363 | if hasattr(self.resolution, 'nx'): |
---|
364 | self.Iq_calc = ( |
---|
365 | self.resolution.qx_calc, self.resolution.qy_calc, |
---|
366 | np.reshape(Iq_calc, (self.resolution.ny, self.resolution.nx)) |
---|
367 | ) |
---|
368 | return result + background |
---|
369 | |
---|
370 | |
---|
371 | class DirectModel(DataMixin): |
---|
372 | """ |
---|
373 | Create a calculator object for a model. |
---|
374 | |
---|
375 | *data* is 1D SAS, 2D SAS or SESANS data |
---|
376 | |
---|
377 | *model* is a model calculator return from :func:`generate.load_model` |
---|
378 | |
---|
379 | *cutoff* is the polydispersity weight cutoff. |
---|
380 | """ |
---|
381 | def __init__(self, data, model, cutoff=1e-5): |
---|
382 | # type: (Data, KernelModel, float) -> None |
---|
383 | self.model = model |
---|
384 | self.cutoff = cutoff |
---|
385 | # Note: _interpret_data defines the model attributes |
---|
386 | self._interpret_data(data, model) |
---|
387 | |
---|
388 | def __call__(self, **pars): |
---|
389 | # type: (**float) -> np.ndarray |
---|
390 | return self._calc_theory(pars, cutoff=self.cutoff) |
---|
391 | |
---|
392 | def simulate_data(self, noise=None, **pars): |
---|
393 | # type: (Optional[float], **float) -> None |
---|
394 | """ |
---|
395 | Generate simulated data for the model. |
---|
396 | """ |
---|
397 | Iq = self.__call__(**pars) |
---|
398 | self._set_data(Iq, noise=noise) |
---|
399 | |
---|
400 | def profile(self, **pars): |
---|
401 | # type: (**float) -> None |
---|
402 | """ |
---|
403 | Generate a plottable profile. |
---|
404 | """ |
---|
405 | return call_profile(self.model.info, **pars) |
---|
406 | |
---|
407 | def main(): |
---|
408 | # type: () -> None |
---|
409 | """ |
---|
410 | Program to evaluate a particular model at a set of q values. |
---|
411 | """ |
---|
412 | import sys |
---|
413 | from .data import empty_data1D, empty_data2D |
---|
414 | from .core import load_model_info, build_model |
---|
415 | |
---|
416 | if len(sys.argv) < 3: |
---|
417 | print("usage: python -m sasmodels.direct_model modelname (q|qx,qy) par=val ...") |
---|
418 | sys.exit(1) |
---|
419 | model_name = sys.argv[1] |
---|
420 | call = sys.argv[2].upper() |
---|
421 | if call != "ER_VR": |
---|
422 | try: |
---|
423 | values = [float(v) for v in call.split(',')] |
---|
424 | except ValueError: |
---|
425 | values = [] |
---|
426 | if len(values) == 1: |
---|
427 | q, = values |
---|
428 | data = empty_data1D([q]) |
---|
429 | elif len(values) == 2: |
---|
430 | qx, qy = values |
---|
431 | data = empty_data2D([qx], [qy]) |
---|
432 | else: |
---|
433 | print("use q or qx,qy or ER or VR") |
---|
434 | sys.exit(1) |
---|
435 | else: |
---|
436 | data = empty_data1D([0.001]) # Data not used in ER/VR |
---|
437 | |
---|
438 | model_info = load_model_info(model_name) |
---|
439 | model = build_model(model_info) |
---|
440 | calculator = DirectModel(data, model) |
---|
441 | pars = dict((k, (float(v) if not k.endswith("_pd_type") else v)) |
---|
442 | for pair in sys.argv[3:] |
---|
443 | for k, v in [pair.split('=')]) |
---|
444 | if call == "ER_VR": |
---|
445 | ER = call_ER(model_info, pars) |
---|
446 | VR = call_VR(model_info, pars) |
---|
447 | print(ER, VR) |
---|
448 | else: |
---|
449 | Iq = calculator(**pars) |
---|
450 | print(Iq[0]) |
---|
451 | |
---|
452 | if __name__ == "__main__": |
---|
453 | main() |
---|