1 | """ |
---|
2 | SAS data representations. |
---|
3 | |
---|
4 | Plotting functions for data sets: |
---|
5 | |
---|
6 | :func:`plot_data` plots the data file. |
---|
7 | |
---|
8 | :func:`plot_theory` plots a calculated result from the model. |
---|
9 | |
---|
10 | Wrappers for the sasview data loader and data manipulations: |
---|
11 | |
---|
12 | :func:`load_data` loads a sasview data file. |
---|
13 | |
---|
14 | :func:`set_beam_stop` masks the beam stop from the data. |
---|
15 | |
---|
16 | :func:`set_half` selects the right or left half of the data, which can |
---|
17 | be useful for shear measurements which have not been properly corrected |
---|
18 | for path length and reflections. |
---|
19 | |
---|
20 | :func:`set_top` cuts the top part off the data. |
---|
21 | |
---|
22 | |
---|
23 | Empty data sets for evaluating models without data: |
---|
24 | |
---|
25 | :func:`empty_data1D` creates an empty dataset, which is useful for plotting |
---|
26 | a theory function before the data is measured. |
---|
27 | |
---|
28 | :func:`empty_data2D` creates an empty 2D dataset. |
---|
29 | |
---|
30 | Note that the empty datasets use a minimal representation of the SasView |
---|
31 | objects so that models can be run without SasView on the path. You could |
---|
32 | also use these for your own data loader. |
---|
33 | |
---|
34 | """ |
---|
35 | import traceback |
---|
36 | |
---|
37 | import numpy as np |
---|
38 | |
---|
39 | def load_data(filename): |
---|
40 | """ |
---|
41 | Load data using a sasview loader. |
---|
42 | """ |
---|
43 | from sas.dataloader.loader import Loader |
---|
44 | loader = Loader() |
---|
45 | data = loader.load(filename) |
---|
46 | if data is None: |
---|
47 | raise IOError("Data %r could not be loaded" % filename) |
---|
48 | return data |
---|
49 | |
---|
50 | |
---|
51 | def set_beam_stop(data, radius, outer=None): |
---|
52 | """ |
---|
53 | Add a beam stop of the given *radius*. If *outer*, make an annulus. |
---|
54 | """ |
---|
55 | from sas.dataloader.manipulations import Ringcut |
---|
56 | if hasattr(data, 'qx_data'): |
---|
57 | data.mask = Ringcut(0, radius)(data) |
---|
58 | if outer is not None: |
---|
59 | data.mask += Ringcut(outer, np.inf)(data) |
---|
60 | else: |
---|
61 | data.mask = (data.x < radius) |
---|
62 | if outer is not None: |
---|
63 | data.mask |= (data.x >= outer) |
---|
64 | |
---|
65 | |
---|
66 | def set_half(data, half): |
---|
67 | """ |
---|
68 | Select half of the data, either "right" or "left". |
---|
69 | """ |
---|
70 | from sas.dataloader.manipulations import Boxcut |
---|
71 | if half == 'right': |
---|
72 | data.mask += \ |
---|
73 | Boxcut(x_min=-np.inf, x_max=0.0, y_min=-np.inf, y_max=np.inf)(data) |
---|
74 | if half == 'left': |
---|
75 | data.mask += \ |
---|
76 | Boxcut(x_min=0.0, x_max=np.inf, y_min=-np.inf, y_max=np.inf)(data) |
---|
77 | |
---|
78 | |
---|
79 | def set_top(data, cutoff): |
---|
80 | """ |
---|
81 | Chop the top off the data, above *cutoff*. |
---|
82 | """ |
---|
83 | from sas.dataloader.manipulations import Boxcut |
---|
84 | data.mask += \ |
---|
85 | Boxcut(x_min=-np.inf, x_max=np.inf, y_min=-np.inf, y_max=cutoff)(data) |
---|
86 | |
---|
87 | |
---|
88 | class Data1D(object): |
---|
89 | def __init__(self, x=None, y=None, dx=None, dy=None): |
---|
90 | self.x, self.y, self.dx, self.dy = x, y, dx, dy |
---|
91 | self.dxl = None |
---|
92 | |
---|
93 | def xaxis(self, label, unit): |
---|
94 | """ |
---|
95 | set the x axis label and unit |
---|
96 | """ |
---|
97 | self._xaxis = label |
---|
98 | self._xunit = unit |
---|
99 | |
---|
100 | def yaxis(self, label, unit): |
---|
101 | """ |
---|
102 | set the y axis label and unit |
---|
103 | """ |
---|
104 | self._yaxis = label |
---|
105 | self._yunit = unit |
---|
106 | |
---|
107 | |
---|
108 | |
---|
109 | class Data2D(object): |
---|
110 | def __init__(self): |
---|
111 | self.detector = [] |
---|
112 | self.source = Source() |
---|
113 | |
---|
114 | def xaxis(self, label, unit): |
---|
115 | """ |
---|
116 | set the x axis label and unit |
---|
117 | """ |
---|
118 | self._xaxis = label |
---|
119 | self._xunit = unit |
---|
120 | |
---|
121 | def yaxis(self, label, unit): |
---|
122 | """ |
---|
123 | set the y axis label and unit |
---|
124 | """ |
---|
125 | self._yaxis = label |
---|
126 | self._yunit = unit |
---|
127 | |
---|
128 | def zaxis(self, label, unit): |
---|
129 | """ |
---|
130 | set the y axis label and unit |
---|
131 | """ |
---|
132 | self._zaxis = label |
---|
133 | self._zunit = unit |
---|
134 | |
---|
135 | |
---|
136 | class Vector(object): |
---|
137 | def __init__(self, x=None, y=None, z=None): |
---|
138 | self.x, self.y, self.z = x, y, z |
---|
139 | |
---|
140 | class Detector(object): |
---|
141 | def __init__(self): |
---|
142 | self.pixel_size = Vector() |
---|
143 | |
---|
144 | class Source(object): |
---|
145 | pass |
---|
146 | |
---|
147 | |
---|
148 | def empty_data1D(q, resolution=0.05): |
---|
149 | """ |
---|
150 | Create empty 1D data using the given *q* as the x value. |
---|
151 | |
---|
152 | *resolution* dq/q defaults to 5%. |
---|
153 | """ |
---|
154 | |
---|
155 | #Iq = 100 * np.ones_like(q) |
---|
156 | #dIq = np.sqrt(Iq) |
---|
157 | Iq, dIq = None, None |
---|
158 | data = Data1D(q, Iq, dx=resolution * q, dy=dIq) |
---|
159 | data.filename = "fake data" |
---|
160 | data.qmin, data.qmax = q.min(), q.max() |
---|
161 | data.mask = np.zeros(len(q), dtype='bool') |
---|
162 | return data |
---|
163 | |
---|
164 | |
---|
165 | def empty_data2D(qx, qy=None, resolution=0.05): |
---|
166 | """ |
---|
167 | Create empty 2D data using the given mesh. |
---|
168 | |
---|
169 | If *qy* is missing, create a square mesh with *qy=qx*. |
---|
170 | |
---|
171 | *resolution* dq/q defaults to 5%. |
---|
172 | """ |
---|
173 | if qy is None: |
---|
174 | qy = qx |
---|
175 | Qx, Qy = np.meshgrid(qx, qy) |
---|
176 | Qx, Qy = Qx.flatten(), Qy.flatten() |
---|
177 | Iq = 100 * np.ones_like(Qx) |
---|
178 | dIq = np.sqrt(Iq) |
---|
179 | mask = np.ones(len(Iq), dtype='bool') |
---|
180 | |
---|
181 | data = Data2D() |
---|
182 | data.filename = "fake data" |
---|
183 | data.qx_data = Qx |
---|
184 | data.qy_data = Qy |
---|
185 | data.data = Iq |
---|
186 | data.err_data = dIq |
---|
187 | data.mask = mask |
---|
188 | data.qmin = 1e-16 |
---|
189 | data.qmax = np.inf |
---|
190 | |
---|
191 | # 5% dQ/Q resolution |
---|
192 | if resolution != 0: |
---|
193 | # https://www.ncnr.nist.gov/staff/hammouda/distance_learning/chapter_15.pdf |
---|
194 | # Should have an additional constant which depends on distances and |
---|
195 | # radii of the aperture, pixel dimensions and wavelength spread |
---|
196 | # Instead, assume radial dQ/Q is constant, and perpendicular matches |
---|
197 | # radial (which instead it should be inverse). |
---|
198 | Q = np.sqrt(Qx**2 + Qy**2) |
---|
199 | data.dqx_data = resolution * Q |
---|
200 | data.dqy_data = resolution * Q |
---|
201 | else: |
---|
202 | data.dqx_data = data.dqy_data = None |
---|
203 | |
---|
204 | detector = Detector() |
---|
205 | detector.pixel_size.x = 5 # mm |
---|
206 | detector.pixel_size.y = 5 # mm |
---|
207 | detector.distance = 4 # m |
---|
208 | data.detector.append(detector) |
---|
209 | data.x_bins = qx |
---|
210 | data.y_bins = qy |
---|
211 | data.source.wavelength = 5 # angstroms |
---|
212 | data.source.wavelength_unit = "A" |
---|
213 | data.Q_unit = "1/A" |
---|
214 | data.I_unit = "1/cm" |
---|
215 | data.q_data = np.sqrt(Qx ** 2 + Qy ** 2) |
---|
216 | data.xaxis("Q_x", "A^{-1}") |
---|
217 | data.yaxis("Q_y", "A^{-1}") |
---|
218 | data.zaxis("Intensity", r"\text{cm}^{-1}") |
---|
219 | return data |
---|
220 | |
---|
221 | |
---|
222 | def plot_data(data, view='log', limits=None): |
---|
223 | """ |
---|
224 | Plot data loaded by the sasview loader. |
---|
225 | """ |
---|
226 | # Note: kind of weird using the plot result functions to plot just the |
---|
227 | # data, but they already handle the masking and graph markup already, so |
---|
228 | # do not repeat. |
---|
229 | if hasattr(data, 'lam'): |
---|
230 | _plot_result_sesans(data, None, None, plot_data=True, limits=limits) |
---|
231 | elif hasattr(data, 'qx_data'): |
---|
232 | _plot_result2D(data, None, None, view, plot_data=True, limits=limits) |
---|
233 | else: |
---|
234 | _plot_result1D(data, None, None, view, plot_data=True, limits=limits) |
---|
235 | |
---|
236 | |
---|
237 | def plot_theory(data, theory, resid=None, view='log', |
---|
238 | plot_data=True, limits=None): |
---|
239 | if hasattr(data, 'lam'): |
---|
240 | _plot_result_sesans(data, theory, resid, plot_data=True, limits=limits) |
---|
241 | elif hasattr(data, 'qx_data'): |
---|
242 | _plot_result2D(data, theory, resid, view, plot_data, limits=limits) |
---|
243 | else: |
---|
244 | _plot_result1D(data, theory, resid, view, plot_data, limits=limits) |
---|
245 | |
---|
246 | |
---|
247 | def protect(fn): |
---|
248 | def wrapper(*args, **kw): |
---|
249 | try: |
---|
250 | return fn(*args, **kw) |
---|
251 | except: |
---|
252 | traceback.print_exc() |
---|
253 | pass |
---|
254 | |
---|
255 | return wrapper |
---|
256 | |
---|
257 | |
---|
258 | @protect |
---|
259 | def _plot_result1D(data, theory, resid, view, plot_data, limits=None): |
---|
260 | """ |
---|
261 | Plot the data and residuals for 1D data. |
---|
262 | """ |
---|
263 | import matplotlib.pyplot as plt |
---|
264 | from numpy.ma import masked_array, masked |
---|
265 | |
---|
266 | plot_theory = theory is not None |
---|
267 | plot_resid = resid is not None |
---|
268 | |
---|
269 | if data.y is None: |
---|
270 | plot_data = False |
---|
271 | scale = data.x**4 if view == 'q4' else 1.0 |
---|
272 | |
---|
273 | if plot_data or plot_theory: |
---|
274 | if plot_resid: |
---|
275 | plt.subplot(121) |
---|
276 | |
---|
277 | #print(vmin, vmax) |
---|
278 | all_positive = True |
---|
279 | some_present = False |
---|
280 | if plot_data: |
---|
281 | mdata = masked_array(data.y, data.mask.copy()) |
---|
282 | mdata[~np.isfinite(mdata)] = masked |
---|
283 | if view is 'log': |
---|
284 | mdata[mdata <= 0] = masked |
---|
285 | plt.errorbar(data.x/10, scale*mdata, yerr=data.dy, fmt='.') |
---|
286 | all_positive = all_positive and (mdata > 0).all() |
---|
287 | some_present = some_present or (mdata.count() > 0) |
---|
288 | |
---|
289 | |
---|
290 | if plot_theory: |
---|
291 | mtheory = masked_array(theory, data.mask.copy()) |
---|
292 | mtheory[~np.isfinite(mtheory)] = masked |
---|
293 | if view is 'log': |
---|
294 | mtheory[mtheory <= 0] = masked |
---|
295 | plt.plot(data.x/10, scale*mtheory, '-', hold=True) |
---|
296 | all_positive = all_positive and (mtheory > 0).all() |
---|
297 | some_present = some_present or (mtheory.count() > 0) |
---|
298 | |
---|
299 | if limits is not None: |
---|
300 | plt.ylim(*limits) |
---|
301 | plt.xscale('linear' if not some_present else view) |
---|
302 | plt.yscale('linear' |
---|
303 | if view == 'q4' or not some_present or not all_positive |
---|
304 | else view) |
---|
305 | plt.xlabel("$q$/nm$^{-1}$") |
---|
306 | plt.ylabel('$I(q)$') |
---|
307 | |
---|
308 | if plot_resid: |
---|
309 | if plot_data or plot_theory: |
---|
310 | plt.subplot(122) |
---|
311 | |
---|
312 | mresid = masked_array(resid, data.mask.copy()) |
---|
313 | mresid[~np.isfinite(mresid)] = masked |
---|
314 | some_present = (mresid.count() > 0) |
---|
315 | plt.plot(data.x/10, mresid, '-') |
---|
316 | plt.xlabel("$q$/nm$^{-1}$") |
---|
317 | plt.ylabel('residuals') |
---|
318 | plt.xscale('linear' if not some_present else view) |
---|
319 | |
---|
320 | |
---|
321 | @protect |
---|
322 | def _plot_result_sesans(data, theory, resid, plot_data, limits=None): |
---|
323 | import matplotlib.pyplot as plt |
---|
324 | if data.y is None: |
---|
325 | plot_data = False |
---|
326 | plot_theory = theory is not None |
---|
327 | plot_resid = resid is not None |
---|
328 | |
---|
329 | if plot_data or plot_theory: |
---|
330 | if plot_resid: |
---|
331 | plt.subplot(121) |
---|
332 | if plot_data: |
---|
333 | plt.errorbar(data.x, data.y, yerr=data.dy) |
---|
334 | if theory is not None: |
---|
335 | plt.plot(data.x, theory, '-', hold=True) |
---|
336 | if limits is not None: |
---|
337 | plt.ylim(*limits) |
---|
338 | plt.xlabel('spin echo length (nm)') |
---|
339 | plt.ylabel('polarization (P/P0)') |
---|
340 | |
---|
341 | if resid is not None: |
---|
342 | if plot_data or plot_theory: |
---|
343 | plt.subplot(122) |
---|
344 | |
---|
345 | plt.plot(data.x, resid, 'x') |
---|
346 | plt.xlabel('spin echo length (nm)') |
---|
347 | plt.ylabel('residuals (P/P0)') |
---|
348 | |
---|
349 | |
---|
350 | @protect |
---|
351 | def _plot_result2D(data, theory, resid, view, plot_data, limits=None): |
---|
352 | """ |
---|
353 | Plot the data and residuals for 2D data. |
---|
354 | """ |
---|
355 | import matplotlib.pyplot as plt |
---|
356 | if data.data is None: |
---|
357 | plot_data = False |
---|
358 | plot_theory = theory is not None |
---|
359 | plot_resid = resid is not None |
---|
360 | |
---|
361 | # Put theory and data on a common colormap scale |
---|
362 | if limits is None: |
---|
363 | vmin, vmax = np.inf, -np.inf |
---|
364 | if plot_data: |
---|
365 | target = data.data[~data.mask] |
---|
366 | datamin = target[target>0].min() if view == 'log' else target.min() |
---|
367 | datamax = target.max() |
---|
368 | vmin = min(vmin, datamin) |
---|
369 | vmax = max(vmax, datamax) |
---|
370 | if plot_theory: |
---|
371 | theorymin = theory[theory>0].min() if view=='log' else theory.min() |
---|
372 | theorymax = theory.max() |
---|
373 | vmin = min(vmin, theorymin) |
---|
374 | vmax = max(vmax, theorymax) |
---|
375 | else: |
---|
376 | vmin, vmax = limits |
---|
377 | |
---|
378 | if plot_data: |
---|
379 | if plot_theory and plot_resid: |
---|
380 | plt.subplot(131) |
---|
381 | elif plot_theory or plot_resid: |
---|
382 | plt.subplot(121) |
---|
383 | _plot_2d_signal(data, target, view=view, vmin=vmin, vmax=vmax) |
---|
384 | plt.title('data') |
---|
385 | h = plt.colorbar() |
---|
386 | h.set_label('$I(q)$') |
---|
387 | |
---|
388 | if plot_theory: |
---|
389 | if plot_data and plot_resid: |
---|
390 | plt.subplot(132) |
---|
391 | elif plot_data: |
---|
392 | plt.subplot(122) |
---|
393 | elif plot_resid: |
---|
394 | plt.subplot(121) |
---|
395 | _plot_2d_signal(data, theory, view=view, vmin=vmin, vmax=vmax) |
---|
396 | plt.title('theory') |
---|
397 | h = plt.colorbar() |
---|
398 | h.set_label(r'$\log_{10}I(q)$' if view == 'log' |
---|
399 | else r'$q^4 I(q)$' if view == 'q4' |
---|
400 | else '$I(q)$') |
---|
401 | |
---|
402 | #if plot_data or plot_theory: |
---|
403 | # plt.colorbar() |
---|
404 | |
---|
405 | if plot_resid: |
---|
406 | if plot_data and plot_theory: |
---|
407 | plt.subplot(133) |
---|
408 | elif plot_data or plot_theory: |
---|
409 | plt.subplot(122) |
---|
410 | _plot_2d_signal(data, resid, view='linear') |
---|
411 | plt.title('residuals') |
---|
412 | h = plt.colorbar() |
---|
413 | h.set_label(r'$\Delta I(q)$') |
---|
414 | |
---|
415 | |
---|
416 | @protect |
---|
417 | def _plot_2d_signal(data, signal, vmin=None, vmax=None, view='log'): |
---|
418 | """ |
---|
419 | Plot the target value for the data. This could be the data itself, |
---|
420 | the theory calculation, or the residuals. |
---|
421 | |
---|
422 | *scale* can be 'log' for log scale data, or 'linear'. |
---|
423 | """ |
---|
424 | import matplotlib.pyplot as plt |
---|
425 | from numpy.ma import masked_array |
---|
426 | |
---|
427 | image = np.zeros_like(data.qx_data) |
---|
428 | image[~data.mask] = signal |
---|
429 | valid = np.isfinite(image) |
---|
430 | if view == 'log': |
---|
431 | valid[valid] = (image[valid] > 0) |
---|
432 | if vmin is None: vmin = image[valid & ~data.mask].min() |
---|
433 | if vmax is None: vmax = image[valid & ~data.mask].max() |
---|
434 | image[valid] = np.log10(image[valid]) |
---|
435 | elif view == 'q4': |
---|
436 | image[valid] *= (data.qx_data[valid]**2+data.qy_data[valid]**2)**2 |
---|
437 | if vmin is None: vmin = image[valid & ~data.mask].min() |
---|
438 | if vmax is None: vmax = image[valid & ~data.mask].max() |
---|
439 | else: |
---|
440 | if vmin is None: vmin = image[valid & ~data.mask].min() |
---|
441 | if vmax is None: vmax = image[valid & ~data.mask].max() |
---|
442 | |
---|
443 | image[~valid | data.mask] = 0 |
---|
444 | #plottable = Iq |
---|
445 | plottable = masked_array(image, ~valid | data.mask) |
---|
446 | xmin, xmax = min(data.qx_data)/10, max(data.qx_data)/10 |
---|
447 | ymin, ymax = min(data.qy_data)/10, max(data.qy_data)/10 |
---|
448 | if view == 'log': |
---|
449 | vmin, vmax = np.log10(vmin), np.log10(vmax) |
---|
450 | plt.imshow(plottable.reshape(len(data.x_bins), len(data.y_bins)), |
---|
451 | interpolation='nearest', aspect=1, origin='upper', |
---|
452 | extent=[xmin, xmax, ymin, ymax], vmin=vmin, vmax=vmax) |
---|
453 | plt.xlabel("$q_x$/nm$^{-1}$") |
---|
454 | plt.ylabel("$q_y$/nm$^{-1}$") |
---|
455 | return vmin, vmax |
---|
456 | |
---|
457 | def demo(): |
---|
458 | data = load_data('DEC07086.DAT') |
---|
459 | set_beam_stop(data, 0.004) |
---|
460 | plot_data(data) |
---|
461 | import matplotlib.pyplot as plt; plt.show() |
---|
462 | |
---|
463 | |
---|
464 | if __name__ == "__main__": |
---|
465 | demo() |
---|