source: sasmodels/sasmodels/data.py @ 1d61d07

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 1d61d07 was 1d61d07, checked in by Paul Kienzle <pkienzle@…>, 8 years ago

fix broken 1D plotting in bumps wrapper

  • Property mode set to 100644
File size: 17.6 KB
Line 
1"""
2SAS data representations.
3
4Plotting functions for data sets:
5
6    :func:`plot_data` plots the data file.
7
8    :func:`plot_theory` plots a calculated result from the model.
9
10Wrappers for the sasview data loader and data manipulations:
11
12    :func:`load_data` loads a sasview data file.
13
14    :func:`set_beam_stop` masks the beam stop from the data.
15
16    :func:`set_half` selects the right or left half of the data, which can
17    be useful for shear measurements which have not been properly corrected
18    for path length and reflections.
19
20    :func:`set_top` cuts the top part off the data.
21
22
23Empty data sets for evaluating models without data:
24
25    :func:`empty_data1D` creates an empty dataset, which is useful for plotting
26    a theory function before the data is measured.
27
28    :func:`empty_data2D` creates an empty 2D dataset.
29
30Note that the empty datasets use a minimal representation of the SasView
31objects so that models can be run without SasView on the path.  You could
32also use these for your own data loader.
33
34"""
35import traceback
36
37import numpy as np
38
39def load_data(filename):
40    """
41    Load data using a sasview loader.
42    """
43    from sas.dataloader.loader import Loader
44    loader = Loader()
45    data = loader.load(filename)
46    if data is None:
47        raise IOError("Data %r could not be loaded" % filename)
48    return data
49
50
51def set_beam_stop(data, radius, outer=None):
52    """
53    Add a beam stop of the given *radius*.  If *outer*, make an annulus.
54    """
55    from sas.dataloader.manipulations import Ringcut
56    if hasattr(data, 'qx_data'):
57        data.mask = Ringcut(0, radius)(data)
58        if outer is not None:
59            data.mask += Ringcut(outer, np.inf)(data)
60    else:
61        data.mask = (data.x < radius)
62        if outer is not None:
63            data.mask |= (data.x >= outer)
64
65
66def set_half(data, half):
67    """
68    Select half of the data, either "right" or "left".
69    """
70    from sas.dataloader.manipulations import Boxcut
71    if half == 'right':
72        data.mask += \
73            Boxcut(x_min=-np.inf, x_max=0.0, y_min=-np.inf, y_max=np.inf)(data)
74    if half == 'left':
75        data.mask += \
76            Boxcut(x_min=0.0, x_max=np.inf, y_min=-np.inf, y_max=np.inf)(data)
77
78
79def set_top(data, cutoff):
80    """
81    Chop the top off the data, above *cutoff*.
82    """
83    from sas.dataloader.manipulations import Boxcut
84    data.mask += \
85        Boxcut(x_min=-np.inf, x_max=np.inf, y_min=-np.inf, y_max=cutoff)(data)
86
87
88class Data1D(object):
89    """
90    1D data object.
91
92    Note that this definition matches the attributes from sasview, with
93    some generic 1D data vectors and some SAS specific definitions.  Some
94    refactoring to allow consistent naming conventions between 1D, 2D and
95    SESANS data would be helpful.
96
97    **Attributes**
98
99    *x*, *dx*: $q$ vector and gaussian resolution
100
101    *y*, *dy*: $I(q)$ vector and measurement uncertainty
102
103    *mask*: values to include in plotting/analysis
104
105    *dxl*: slit widths for slit smeared data, with *dx* ignored
106
107    *qmin*, *qmax*: range of $q$ values in *x*
108
109    *filename*: label for the data line
110
111    *_xaxis*, *_xunit*: label and units for the *x* axis
112
113    *_yaxis*, *_yunit*: label and units for the *y* axis
114    """
115    def __init__(self, x=None, y=None, dx=None, dy=None):
116        self.x, self.y, self.dx, self.dy = x, y, dx, dy
117        self.dxl = None
118        self.filename = None
119        self.qmin = x.min() if x is not None else np.NaN
120        self.qmax = x.max() if x is not None else np.NaN
121        # TODO: why is 1D mask False and 2D mask True?
122        self.mask = (np.isnan(y) if y is not None
123                     else np.zeros_like(x, 'b') if x is not None
124                     else None)
125        self._xaxis, self._xunit = "x", ""
126        self._yaxis, self._yunit = "y", ""
127
128    def xaxis(self, label, unit):
129        """
130        set the x axis label and unit
131        """
132        self._xaxis = label
133        self._xunit = unit
134
135    def yaxis(self, label, unit):
136        """
137        set the y axis label and unit
138        """
139        self._yaxis = label
140        self._yunit = unit
141
142
143
144class Data2D(object):
145    """
146    2D data object.
147
148    Note that this definition matches the attributes from sasview. Some
149    refactoring to allow consistent naming conventions between 1D, 2D and
150    SESANS data would be helpful.
151
152    **Attributes**
153
154    *qx_data*, *dqx_data*: $q_x$ matrix and gaussian resolution
155
156    *qy_data*, *dqy_data*: $q_y$ matrix and gaussian resolution
157
158    *data*, *err_data*: $I(q)$ matrix and measurement uncertainty
159
160    *mask*: values to exclude from plotting/analysis
161
162    *qmin*, *qmax*: range of $q$ values in *x*
163
164    *filename*: label for the data line
165
166    *_xaxis*, *_xunit*: label and units for the *x* axis
167
168    *_yaxis*, *_yunit*: label and units for the *y* axis
169
170    *_zaxis*, *_zunit*: label and units for the *y* axis
171
172    *Q_unit*, *I_unit*: units for Q and intensity
173
174    *x_bins*, *y_bins*: grid steps in *x* and *y* directions
175    """
176    def __init__(self, x=None, y=None, z=None, dx=None, dy=None, dz=None):
177        self.qx_data, self.dqx_data = x, dx
178        self.qy_data, self.dqy_data = y, dy
179        self.data, self.err_data = z, dz
180        self.mask = (np.isnan(z) if z is not None
181                     else np.zeros_like(x, dtype='bool') if x is not None
182                     else None)
183        self.q_data = np.sqrt(x**2 + y**2)
184        self.qmin = 1e-16
185        self.qmax = np.inf
186        self.detector = []
187        self.source = Source()
188        self.Q_unit = "1/A"
189        self.I_unit = "1/cm"
190        self.xaxis("Q_x", "1/A")
191        self.yaxis("Q_y", "1/A")
192        self.zaxis("Intensity", "1/cm")
193        self._xaxis, self._xunit = "x", ""
194        self._yaxis, self._yunit = "y", ""
195        self._zaxis, self._zunit = "z", ""
196        self.x_bins, self.y_bins = None, None
197
198    def xaxis(self, label, unit):
199        """
200        set the x axis label and unit
201        """
202        self._xaxis = label
203        self._xunit = unit
204
205    def yaxis(self, label, unit):
206        """
207        set the y axis label and unit
208        """
209        self._yaxis = label
210        self._yunit = unit
211
212    def zaxis(self, label, unit):
213        """
214        set the y axis label and unit
215        """
216        self._zaxis = label
217        self._zunit = unit
218
219
220class Vector(object):
221    """
222    3-space vector of *x*, *y*, *z*
223    """
224    def __init__(self, x=None, y=None, z=None):
225        self.x, self.y, self.z = x, y, z
226
227class Detector(object):
228    """
229    Detector attributes.
230    """
231    def __init__(self, pixel_size=(None, None), distance=None):
232        self.pixel_size = Vector(*pixel_size)
233        self.distance = distance
234
235class Source(object):
236    """
237    Beam attributes.
238    """
239    def __init__(self):
240        self.wavelength = np.NaN
241        self.wavelength_unit = "A"
242
243
244def empty_data1D(q, resolution=0.0):
245    """
246    Create empty 1D data using the given *q* as the x value.
247
248    *resolution* dq/q defaults to 5%.
249    """
250
251    #Iq = 100 * np.ones_like(q)
252    #dIq = np.sqrt(Iq)
253    Iq, dIq = None, None
254    q = np.asarray(q)
255    data = Data1D(q, Iq, dx=resolution * q, dy=dIq)
256    data.filename = "fake data"
257    return data
258
259
260def empty_data2D(qx, qy=None, resolution=0.0):
261    """
262    Create empty 2D data using the given mesh.
263
264    If *qy* is missing, create a square mesh with *qy=qx*.
265
266    *resolution* dq/q defaults to 5%.
267    """
268    if qy is None:
269        qy = qx
270    qx, qy = np.asarray(qx), np.asarray(qy)
271    # 5% dQ/Q resolution
272    Qx, Qy = np.meshgrid(qx, qy)
273    Qx, Qy = Qx.flatten(), Qy.flatten()
274    Iq = 100 * np.ones_like(Qx)
275    dIq = np.sqrt(Iq)
276    if resolution != 0:
277        # https://www.ncnr.nist.gov/staff/hammouda/distance_learning/chapter_15.pdf
278        # Should have an additional constant which depends on distances and
279        # radii of the aperture, pixel dimensions and wavelength spread
280        # Instead, assume radial dQ/Q is constant, and perpendicular matches
281        # radial (which instead it should be inverse).
282        Q = np.sqrt(Qx**2 + Qy**2)
283        dqx = resolution * Q
284        dqy = resolution * Q
285    else:
286        dqx = dqy = None
287
288    data = Data2D(x=Qx, y=Qy, z=Iq, dx=dqx, dy=dqy, dz=dIq)
289    data.x_bins = qx
290    data.y_bins = qy
291    data.filename = "fake data"
292
293    # pixel_size in mm, distance in m
294    detector = Detector(pixel_size=(5, 5), distance=4)
295    data.detector.append(detector)
296    data.source.wavelength = 5 # angstroms
297    data.source.wavelength_unit = "A"
298    return data
299
300
301def plot_data(data, view='log', limits=None):
302    """
303    Plot data loaded by the sasview loader.
304
305    *data* is a sasview data object, either 1D, 2D or SESANS.
306
307    *view* is log or linear.
308
309    *limits* sets the intensity limits on the plot; if None then the limits
310    are inferred from the data.
311    """
312    # Note: kind of weird using the plot result functions to plot just the
313    # data, but they already handle the masking and graph markup already, so
314    # do not repeat.
315    if hasattr(data, 'lam'):
316        _plot_result_sesans(data, None, None, use_data=True, limits=limits)
317    elif hasattr(data, 'qx_data'):
318        _plot_result2D(data, None, None, view, use_data=True, limits=limits)
319    else:
320        _plot_result1D(data, None, None, view, use_data=True, limits=limits)
321
322
323def plot_theory(data, theory, resid=None, view='log',
324                use_data=True, limits=None):
325    """
326    Plot theory calculation.
327
328    *data* is needed to define the graph properties such as labels and
329    units, and to define the data mask.
330
331    *theory* is a matrix of the same shape as the data.
332
333    *view* is log or linear
334
335    *use_data* is True if the data should be plotted as well as the theory.
336
337    *limits* sets the intensity limits on the plot; if None then the limits
338    are inferred from the data.
339    """
340    if hasattr(data, 'lam'):
341        _plot_result_sesans(data, theory, resid, use_data=True, limits=limits)
342    elif hasattr(data, 'qx_data'):
343        _plot_result2D(data, theory, resid, view, use_data, limits=limits)
344    else:
345        _plot_result1D(data, theory, resid, view, use_data, limits=limits)
346
347
348def protect(fn):
349    """
350    Decorator to wrap calls in an exception trapper which prints the
351    exception and continues.  Keyboard interrupts are ignored.
352    """
353    def wrapper(*args, **kw):
354        """
355        Trap and print errors from function.
356        """
357        try:
358            return fn(*args, **kw)
359        except KeyboardInterrupt:
360            raise
361        except:
362            traceback.print_exc()
363
364    return wrapper
365
366
367@protect
368def _plot_result1D(data, theory, resid, view, use_data, limits=None):
369    """
370    Plot the data and residuals for 1D data.
371    """
372    import matplotlib.pyplot as plt
373    from numpy.ma import masked_array, masked
374
375    use_data = use_data and data.y is not None
376    use_theory = theory is not None
377    use_resid = resid is not None
378    num_plots = (use_data or use_theory) + use_resid
379
380    scale = data.x**4 if view == 'q4' else 1.0
381
382    if use_data or use_theory:
383        if num_plots > 1:
384            plt.subplot(1, num_plots, 1)
385
386        #print(vmin, vmax)
387        all_positive = True
388        some_present = False
389        if use_data:
390            mdata = masked_array(data.y, data.mask.copy())
391            mdata[~np.isfinite(mdata)] = masked
392            if view is 'log':
393                mdata[mdata <= 0] = masked
394            plt.errorbar(data.x, scale*mdata, yerr=data.dy, fmt='.')
395            all_positive = all_positive and (mdata > 0).all()
396            some_present = some_present or (mdata.count() > 0)
397
398
399        if use_theory:
400            mtheory = masked_array(theory, data.mask.copy())
401            mtheory[~np.isfinite(mtheory)] = masked
402            if view is 'log':
403                mtheory[mtheory <= 0] = masked
404            plt.plot(data.x, scale*mtheory, '-', hold=True)
405            all_positive = all_positive and (mtheory > 0).all()
406            some_present = some_present or (mtheory.count() > 0)
407
408        if limits is not None:
409            plt.ylim(*limits)
410
411        plt.xscale('linear' if not some_present else view)
412        plt.yscale('linear'
413                   if view == 'q4' or not some_present or not all_positive
414                   else view)
415        plt.xlabel("$q$/A$^{-1}$")
416        plt.ylabel('$I(q)$')
417
418    if use_resid:
419        mresid = masked_array(resid, data.mask.copy())
420        mresid[~np.isfinite(mresid)] = masked
421        some_present = (mresid.count() > 0)
422
423        if num_plots > 1:
424            plt.subplot(1, num_plots, (use_data or use_theory) + 1)
425        plt.plot(data.x, mresid, '-')
426        plt.xlabel("$q$/A$^{-1}$")
427        plt.ylabel('residuals')
428        plt.xscale('linear' if not some_present else view)
429
430
431@protect
432def _plot_result_sesans(data, theory, resid, use_data, limits=None):
433    """
434    Plot SESANS results.
435    """
436    import matplotlib.pyplot as plt
437    use_data = use_data and data.y is not None
438    use_theory = theory is not None
439    use_resid = resid is not None
440    num_plots = (use_data or use_theory) + use_resid
441
442    if use_data or use_theory:
443        is_tof = np.any(data.lam!=data.lam[0])
444        if num_plots > 1:
445            plt.subplot(1, num_plots, 1)
446        if use_data:
447            if is_tof:
448                plt.errorbar(data.x, np.log(data.y)/(data.lam*data.lam), yerr=data.dy/data.y/(data.lam*data.lam))
449            else:
450                plt.errorbar(data.x, data.y, yerr=data.dy)
451        if theory is not None:
452            if is_tof:
453                plt.plot(data.x, np.log(theory)/(data.lam*data.lam), '-', hold=True)
454            else:
455                plt.plot(data.x, theory, '-', hold=True)
456        if limits is not None:
457            plt.ylim(*limits)
458
459        plt.xlabel('spin echo length ({})'.format(data._xunit))
460        if is_tof:
461            plt.ylabel('(Log (P/P$_0$))/$\lambda^2$')
462        else:
463            plt.ylabel('polarization (P/P0)')
464
465
466    if resid is not None:
467        if num_plots > 1:
468            plt.subplot(1, num_plots, (use_data or use_theory) + 1)
469        plt.plot(data.x, resid, 'x')
470        plt.xlabel('spin echo length ({})'.format(data._xunit))
471        plt.ylabel('residuals (P/P0)')
472
473
474@protect
475def _plot_result2D(data, theory, resid, view, use_data, limits=None):
476    """
477    Plot the data and residuals for 2D data.
478    """
479    import matplotlib.pyplot as plt
480    use_data = use_data and data.data is not None
481    use_theory = theory is not None
482    use_resid = resid is not None
483    num_plots = use_data + use_theory + use_resid
484
485    # Put theory and data on a common colormap scale
486    vmin, vmax = np.inf, -np.inf
487    if use_data:
488        target = data.data[~data.mask]
489        datamin = target[target > 0].min() if view == 'log' else target.min()
490        datamax = target.max()
491        vmin = min(vmin, datamin)
492        vmax = max(vmax, datamax)
493    if use_theory:
494        theorymin = theory[theory > 0].min() if view == 'log' else theory.min()
495        theorymax = theory.max()
496        vmin = min(vmin, theorymin)
497        vmax = max(vmax, theorymax)
498
499    # Override data limits from the caller
500    if limits is not None:
501        vmin, vmax = limits
502
503    # Plot data
504    if use_data:
505        if num_plots > 1:
506            plt.subplot(1, num_plots, 1)
507        _plot_2d_signal(data, target, view=view, vmin=vmin, vmax=vmax)
508        plt.title('data')
509        h = plt.colorbar()
510        h.set_label('$I(q)$')
511
512    # plot theory
513    if use_theory:
514        if num_plots > 1:
515            plt.subplot(1, num_plots, use_data+1)
516        _plot_2d_signal(data, theory, view=view, vmin=vmin, vmax=vmax)
517        plt.title('theory')
518        h = plt.colorbar()
519        h.set_label(r'$\log_{10}I(q)$' if view == 'log'
520                    else r'$q^4 I(q)$' if view == 'q4'
521                    else '$I(q)$')
522
523    # plot resid
524    if use_resid:
525        if num_plots > 1:
526            plt.subplot(1, num_plots, use_data+use_theory+1)
527        _plot_2d_signal(data, resid, view='linear')
528        plt.title('residuals')
529        h = plt.colorbar()
530        h.set_label(r'$\Delta I(q)$')
531
532
533@protect
534def _plot_2d_signal(data, signal, vmin=None, vmax=None, view='log'):
535    """
536    Plot the target value for the data.  This could be the data itself,
537    the theory calculation, or the residuals.
538
539    *scale* can be 'log' for log scale data, or 'linear'.
540    """
541    import matplotlib.pyplot as plt
542    from numpy.ma import masked_array
543
544    image = np.zeros_like(data.qx_data)
545    image[~data.mask] = signal
546    valid = np.isfinite(image)
547    if view == 'log':
548        valid[valid] = (image[valid] > 0)
549        if vmin is None: vmin = image[valid & ~data.mask].min()
550        if vmax is None: vmax = image[valid & ~data.mask].max()
551        image[valid] = np.log10(image[valid])
552    elif view == 'q4':
553        image[valid] *= (data.qx_data[valid]**2+data.qy_data[valid]**2)**2
554        if vmin is None: vmin = image[valid & ~data.mask].min()
555        if vmax is None: vmax = image[valid & ~data.mask].max()
556    else:
557        if vmin is None: vmin = image[valid & ~data.mask].min()
558        if vmax is None: vmax = image[valid & ~data.mask].max()
559
560    image[~valid | data.mask] = 0
561    #plottable = Iq
562    plottable = masked_array(image, ~valid | data.mask)
563    # Divide range by 10 to convert from angstroms to nanometers
564    xmin, xmax = min(data.qx_data)/10, max(data.qx_data)/10
565    ymin, ymax = min(data.qy_data)/10, max(data.qy_data)/10
566    if view == 'log':
567        vmin, vmax = np.log10(vmin), np.log10(vmax)
568    plt.imshow(plottable.reshape(len(data.x_bins), len(data.y_bins)),
569               interpolation='nearest', aspect=1, origin='upper',
570               extent=[xmin, xmax, ymin, ymax], vmin=vmin, vmax=vmax)
571    plt.xlabel("$q_x$/nm$^{-1}$")
572    plt.ylabel("$q_y$/nm$^{-1}$")
573    return vmin, vmax
574
575def demo():
576    """
577    Load and plot a SAS dataset.
578    """
579    data = load_data('DEC07086.DAT')
580    set_beam_stop(data, 0.004)
581    plot_data(data)
582    import matplotlib.pyplot as plt; plt.show()
583
584
585if __name__ == "__main__":
586    demo()
Note: See TracBrowser for help on using the repository browser.