source: sasmodels/sasmodels/core.py @ ea1f14d

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since ea1f14d was ea1f14d, checked in by wojciech, 8 years ago

Polydispersity goes all way long but doesn't change parameters

  • Property mode set to 100644
File size: 10.6 KB
Line 
1"""
2Core model handling routines.
3"""
4
5from os.path import basename, dirname, join as joinpath, splitext
6from glob import glob
7import imp
8
9import numpy as np
10
11from . import models
12from . import weights
13from . import generate
14# TODO: remove circular references between product and core
15# product uses call_ER/call_VR, core uses make_product_info/ProductModel
16#from . import product
17from . import mixture
18from . import kernelpy
19from . import kerneldll
20try:
21    from . import kernelcl
22    HAVE_OPENCL = True
23except:
24    HAVE_OPENCL = False
25
26__all__ = [
27    "list_models", "load_model_info", "precompile_dll",
28    "build_model", "call_kernel", "call_ER_VR",
29]
30
31def list_models():
32    """
33    Return the list of available models on the model path.
34    """
35    root = dirname(__file__)
36    files = sorted(glob(joinpath(root, 'models', "[a-zA-Z]*.py")))
37    available_models = [basename(f)[:-3] for f in files]
38    return available_models
39
40def isstr(s):
41    """
42    Return True if *s* is a string-like object.
43    """
44    try: s + ''
45    except: return False
46    return True
47
48def load_model(model_name, **kw):
49    """
50    Load model info and build model.
51    """
52    return build_model(load_model_info(model_name), **kw)
53
54def load_model_info_from_path(path):
55    # Pull off the last .ext if it exists; there may be others
56    name = basename(splitext(path)[0])
57
58    # Not cleaning name since don't need to be able to reload this
59    # model later
60    # Should probably turf the model from sys.modules after we are done...
61
62    # Placing the model in the 'sasmodels.custom' name space, even
63    # though it doesn't actually exist.  imp.load_source doesn't seem
64    # to care.
65    kernel_module = imp.load_source('sasmodels.custom.'+name, path)
66
67    # Now that we have the module, we can load it as usual
68    model_info = generate.make_model_info(kernel_module)
69    return model_info
70
71def load_model_info(model_name):
72    """
73    Load a model definition given the model name.
74
75    This returns a handle to the module defining the model.  This can be
76    used with functions in generate to build the docs or extract model info.
77    """
78    parts = model_name.split('+')
79    if len(parts) > 1:
80        model_info_list = [load_model_info(p) for p in parts]
81        return mixture.make_mixture_info(model_info_list)
82
83    parts = model_name.split('*')
84    if len(parts) > 1:
85        from . import product
86        # Note: currently have circular reference
87        if len(parts) > 2:
88            raise ValueError("use P*S to apply structure factor S to model P")
89        P_info, Q_info = [load_model_info(p) for p in parts]
90        return product.make_product_info(P_info, Q_info)
91
92    #import sys; print "\n".join(sys.path)
93    __import__('sasmodels.models.'+model_name)
94    kernel_module = getattr(models, model_name, None)
95    return generate.make_model_info(kernel_module)
96
97
98def build_model(model_info, dtype=None, platform="ocl"):
99    """
100    Prepare the model for the default execution platform.
101
102    This will return an OpenCL model, a DLL model or a python model depending
103    on the model and the computing platform.
104
105    *model_info* is the model definition structure returned from
106    :func:`load_model_info`.
107
108    *dtype* indicates whether the model should use single or double precision
109    for the calculation. Any valid numpy single or double precision identifier
110    is valid, such as 'single', 'f', 'f32', or np.float32 for single, or
111    'double', 'd', 'f64'  and np.float64 for double.  If *None*, then use
112    'single' unless the model defines single=False.
113
114    *platform* should be "dll" to force the dll to be used for C models,
115    otherwise it uses the default "ocl".
116    """
117    composition = model_info.get('composition', None)
118    if composition is not None:
119        composition_type, parts = composition
120        models = [build_model(p, dtype=dtype, platform=platform) for p in parts]
121        if composition_type == 'mixture':
122            return mixture.MixtureModel(model_info, models)
123        elif composition_type == 'product':
124            from . import product
125            P, S = models
126            return product.ProductModel(model_info, P, S)
127        else:
128            raise ValueError('unknown mixture type %s'%composition_type)
129
130    ## for debugging:
131    ##  1. uncomment open().write so that the source will be saved next time
132    ##  2. run "python -m sasmodels.direct_model $MODELNAME" to save the source
133    ##  3. recomment the open.write() and uncomment open().read()
134    ##  4. rerun "python -m sasmodels.direct_model $MODELNAME"
135    ##  5. uncomment open().read() so that source will be regenerated from model
136    # open(model_info['name']+'.c','w').write(source)
137    # source = open(model_info['name']+'.cl','r').read()
138    source = generate.make_source(model_info)
139    if dtype is None:
140        dtype = 'single' if model_info['single'] else 'double'
141    if callable(model_info.get('Iq', None)):
142        return kernelpy.PyModel(model_info)
143    if (platform == "dll"
144            or not HAVE_OPENCL
145            or not kernelcl.environment().has_type(dtype)):
146        return kerneldll.load_dll(source, model_info, dtype)
147    else:
148        return kernelcl.GpuModel(source, model_info, dtype)
149
150def precompile_dll(model_name, dtype="double"):
151    """
152    Precompile the dll for a model.
153
154    Returns the path to the compiled model, or None if the model is a pure
155    python model.
156
157    This can be used when build the windows distribution of sasmodels
158    (which may be missing the OpenCL driver and the dll compiler), or
159    otherwise sharing models with windows users who do not have a compiler.
160
161    See :func:`sasmodels.kerneldll.make_dll` for details on controlling the
162    dll path and the allowed floating point precision.
163    """
164    model_info = load_model_info(model_name)
165    source = generate.make_source(model_info)
166    return kerneldll.make_dll(source, model_info, dtype=dtype) if source else None
167
168
169def get_weights(parameter, values):
170    """
171    Generate the distribution for parameter *name* given the parameter values
172    in *pars*.
173
174    Uses "name", "name_pd", "name_pd_type", "name_pd_n", "name_pd_sigma"
175    from the *pars* dictionary for parameter value and parameter dispersion.
176    """
177    value = values.get(parameter.name, parameter.default)
178    if parameter.type not in ('volume', 'orientation'):
179        return np.array([value]), np.array([1.0])
180    relative = parameter.type == 'volume'
181    limits = parameter.limits
182    disperser = values.get(parameter.name+'_pd_type', 'gaussian')
183    npts = values.get(parameter.name+'_pd_n', 0)
184    width = values.get(parameter.name+'_pd', 0.0)
185    nsigma = values.get(parameter.name+'_pd_nsigma', 3.0)
186    value, weight = weights.get_weights(
187        disperser, npts, width, nsigma, value, limits, relative)
188    return value, weight / np.sum(weight)
189
190def dispersion_mesh(pars):
191    """
192    Create a mesh grid of dispersion parameters and weights.
193
194    Returns [p1,p2,...],w where pj is a vector of values for parameter j
195    and w is a vector containing the products for weights for each
196    parameter set in the vector.
197    """
198    value, weight = zip(*pars)
199    value = [v.flatten() for v in np.meshgrid(*value)]
200    weight = np.vstack([v.flatten() for v in np.meshgrid(*weight)])
201    weight = np.prod(weight, axis=0)
202    return value, weight
203
204def call_kernel(kernel, pars, cutoff=0, mono=False):
205    """
206    Call *kernel* returned from *model.make_kernel* with parameters *pars*.
207
208    *cutoff* is the limiting value for the product of dispersion weights used
209    to perform the multidimensional dispersion calculation more quickly at a
210    slight cost to accuracy. The default value of *cutoff=0* integrates over
211    the entire dispersion cube.  Using *cutoff=1e-5* can be 50% faster, but
212    with an error of about 1%, which is usually less than the measurement
213    uncertainty.
214
215    *mono* is True if polydispersity should be set to none on all parameters.
216    """
217    if mono:
218        active = lambda name: False
219    elif kernel.dim == '1d':
220        active = lambda name: name in set(kernel.info['par_type']['1d'])
221    elif kernel.dim == '2d':
222        active = lambda name: name in set(kernel.info['par_type']['2d'])
223    else:
224        active = lambda name: True
225
226    vw_pairs = [(get_weights(p, pars) if active(p.name) else ([p.default], [1]))
227                for p in kernel.info['parameters']]
228    values, weights = zip(*vw_pairs)
229
230    if max([len(w) for w in weights]) > 1:
231        details = generate.poly_details(kernel.info, weights)
232    else:
233        details = kernel.info['mono_details']
234
235    weights, values = [np.hstack(v) for v in (weights, values)]
236
237    weights = weights.astype(dtype=kernel.dtype)
238    values = values.astype(dtype=kernel.dtype)
239    print("kernel poly",values)
240    return kernel(details, weights, values, cutoff)
241
242def call_ER_VR(model_info, vol_pars):
243    """
244    Return effect radius and volume ratio for the model.
245
246    *info* is either *kernel.info* for *kernel=make_kernel(model,q)*
247    or *model.info*.
248
249    *pars* are the parameters as expected by :func:`call_kernel`.
250    """
251    ER = model_info.get('ER', None)
252    VR = model_info.get('VR', None)
253    value, weight = dispersion_mesh(vol_pars)
254
255    individual_radii = ER(*value) if ER else 1.0
256    whole, part = VR(*value) if VR else (1.0, 1.0)
257
258    effect_radius = np.sum(weight*individual_radii) / np.sum(weight)
259    volume_ratio = np.sum(weight*part)/np.sum(weight*whole)
260    return effect_radius, volume_ratio
261
262
263def call_ER(model_info, values):
264    """
265    Call the model ER function using *values*. *model_info* is either
266    *model.info* if you have a loaded model, or *kernel.info* if you
267    have a model kernel prepared for evaluation.
268    """
269    ER = model_info.get('ER', None)
270    if ER is None:
271        return 1.0
272    else:
273        vol_pars = [get_weights(parameter, values)
274                    for parameter in model_info['parameters']
275                    if parameter.type == 'volume']
276        value, weight = dispersion_mesh(vol_pars)
277        individual_radii = ER(*value)
278        #print(values[0].shape, weights.shape, fv.shape)
279        return np.sum(weight*individual_radii) / np.sum(weight)
280
281def call_VR(model_info, values):
282    """
283    Call the model VR function using *pars*.
284    *info* is either *model.info* if you have a loaded model, or *kernel.info*
285    if you have a model kernel prepared for evaluation.
286    """
287    VR = model_info.get('VR', None)
288    if VR is None:
289        return 1.0
290    else:
291        vol_pars = [get_weights(parameter, values)
292                    for parameter in model_info['parameters']
293                    if parameter.type == 'volume']
294        value, weight = dispersion_mesh(vol_pars)
295        whole, part = VR(*value)
296        return np.sum(weight*part)/np.sum(weight*whole)
297
298# TODO: remove call_ER, call_VR
299
Note: See TracBrowser for help on using the repository browser.