1 | #!/usr/bin/env python |
---|
2 | # -*- coding: utf-8 -*- |
---|
3 | |
---|
4 | import sys |
---|
5 | import math |
---|
6 | from os.path import basename, dirname, join as joinpath |
---|
7 | import glob |
---|
8 | import datetime |
---|
9 | import traceback |
---|
10 | |
---|
11 | import numpy as np |
---|
12 | |
---|
13 | ROOT = dirname(__file__) |
---|
14 | sys.path.insert(0, ROOT) # Make sure sasmodels is first on the path |
---|
15 | |
---|
16 | |
---|
17 | from . import core |
---|
18 | from . import kerneldll |
---|
19 | from . import generate |
---|
20 | from .data import plot_theory, empty_data1D, empty_data2D |
---|
21 | from .direct_model import DirectModel |
---|
22 | from .convert import revert_model |
---|
23 | kerneldll.ALLOW_SINGLE_PRECISION_DLLS = True |
---|
24 | |
---|
25 | # List of available models |
---|
26 | MODELS = [basename(f)[:-3] |
---|
27 | for f in sorted(glob.glob(joinpath(ROOT,"models","[a-zA-Z]*.py")))] |
---|
28 | |
---|
29 | # CRUFT python 2.6 |
---|
30 | if not hasattr(datetime.timedelta, 'total_seconds'): |
---|
31 | def delay(dt): |
---|
32 | """Return number date-time delta as number seconds""" |
---|
33 | return dt.days * 86400 + dt.seconds + 1e-6 * dt.microseconds |
---|
34 | else: |
---|
35 | def delay(dt): |
---|
36 | """Return number date-time delta as number seconds""" |
---|
37 | return dt.total_seconds() |
---|
38 | |
---|
39 | |
---|
40 | def tic(): |
---|
41 | """ |
---|
42 | Timer function. |
---|
43 | |
---|
44 | Use "toc=tic()" to start the clock and "toc()" to measure |
---|
45 | a time interval. |
---|
46 | """ |
---|
47 | then = datetime.datetime.now() |
---|
48 | return lambda: delay(datetime.datetime.now() - then) |
---|
49 | |
---|
50 | |
---|
51 | def set_beam_stop(data, radius, outer=None): |
---|
52 | """ |
---|
53 | Add a beam stop of the given *radius*. If *outer*, make an annulus. |
---|
54 | |
---|
55 | Note: this function does not use the sasview package |
---|
56 | """ |
---|
57 | if hasattr(data, 'qx_data'): |
---|
58 | q = np.sqrt(data.qx_data**2 + data.qy_data**2) |
---|
59 | data.mask = (q < radius) |
---|
60 | if outer is not None: |
---|
61 | data.mask |= (q >= outer) |
---|
62 | else: |
---|
63 | data.mask = (data.x < radius) |
---|
64 | if outer is not None: |
---|
65 | data.mask |= (data.x >= outer) |
---|
66 | |
---|
67 | |
---|
68 | def sasview_model(model_definition, **pars): |
---|
69 | """ |
---|
70 | Load a sasview model given the model name. |
---|
71 | """ |
---|
72 | # convert model parameters from sasmodel form to sasview form |
---|
73 | #print "old",sorted(pars.items()) |
---|
74 | modelname, pars = revert_model(model_definition, pars) |
---|
75 | #print "new",sorted(pars.items()) |
---|
76 | sas = __import__('sas.models.'+modelname) |
---|
77 | ModelClass = getattr(getattr(sas.models,modelname,None),modelname,None) |
---|
78 | if ModelClass is None: |
---|
79 | raise ValueError("could not find model %r in sas.models"%modelname) |
---|
80 | model = ModelClass() |
---|
81 | |
---|
82 | for k,v in pars.items(): |
---|
83 | if k.endswith("_pd"): |
---|
84 | model.dispersion[k[:-3]]['width'] = v |
---|
85 | elif k.endswith("_pd_n"): |
---|
86 | model.dispersion[k[:-5]]['npts'] = v |
---|
87 | elif k.endswith("_pd_nsigma"): |
---|
88 | model.dispersion[k[:-10]]['nsigmas'] = v |
---|
89 | elif k.endswith("_pd_type"): |
---|
90 | model.dispersion[k[:-8]]['type'] = v |
---|
91 | else: |
---|
92 | model.setParam(k, v) |
---|
93 | return model |
---|
94 | |
---|
95 | def randomize(p, v): |
---|
96 | """ |
---|
97 | Randomizing parameter. |
---|
98 | |
---|
99 | Guess the parameter type from name. |
---|
100 | """ |
---|
101 | if any(p.endswith(s) for s in ('_pd_n','_pd_nsigma','_pd_type')): |
---|
102 | return v |
---|
103 | elif any(s in p for s in ('theta','phi','psi')): |
---|
104 | # orientation in [-180,180], orientation pd in [0,45] |
---|
105 | if p.endswith('_pd'): |
---|
106 | return 45*np.random.rand() |
---|
107 | else: |
---|
108 | return 360*np.random.rand() - 180 |
---|
109 | elif 'sld' in p: |
---|
110 | # sld in in [-0.5,10] |
---|
111 | return 10.5*np.random.rand() - 0.5 |
---|
112 | elif p.endswith('_pd'): |
---|
113 | # length pd in [0,1] |
---|
114 | return np.random.rand() |
---|
115 | else: |
---|
116 | # values from 0 to 2*x for all other parameters |
---|
117 | return 2*np.random.rand()*(v if v != 0 else 1) |
---|
118 | |
---|
119 | def randomize_model(pars, seed=None): |
---|
120 | if seed is None: |
---|
121 | seed = np.random.randint(1e9) |
---|
122 | np.random.seed(seed) |
---|
123 | # Note: the sort guarantees order of calls to random number generator |
---|
124 | pars = dict((p,randomize(p,v)) for p,v in sorted(pars.items())) |
---|
125 | |
---|
126 | return pars, seed |
---|
127 | |
---|
128 | def constrain_pars(model_definition, pars): |
---|
129 | name = model_definition.name |
---|
130 | if name == 'capped_cylinder' and pars['cap_radius'] < pars['radius']: |
---|
131 | pars['radius'],pars['cap_radius'] = pars['cap_radius'],pars['radius'] |
---|
132 | |
---|
133 | # These constraints are only needed for comparison to sasview |
---|
134 | if name in ('teubner_strey','broad_peak'): |
---|
135 | del pars['scale'] |
---|
136 | if name in ('guinier',): |
---|
137 | del pars['background'] |
---|
138 | if getattr(model_definition, 'category', None) == 'structure-factor': |
---|
139 | del pars['scale'], pars['background'] |
---|
140 | |
---|
141 | |
---|
142 | def parlist(pars): |
---|
143 | return "\n".join("%s: %s"%(p,v) for p,v in sorted(pars.items())) |
---|
144 | |
---|
145 | def suppress_pd(pars): |
---|
146 | """ |
---|
147 | Suppress theta_pd for now until the normalization is resolved. |
---|
148 | |
---|
149 | May also suppress complete polydispersity of the model to test |
---|
150 | models more quickly. |
---|
151 | """ |
---|
152 | for p in pars: |
---|
153 | if p.endswith("_pd"): pars[p] = 0 |
---|
154 | |
---|
155 | def eval_sasview(model_definition, pars, data, Nevals=1): |
---|
156 | from sas.models.qsmearing import smear_selection |
---|
157 | model = sasview_model(model_definition, **pars) |
---|
158 | smearer = smear_selection(data, model=model) |
---|
159 | value = None # silence the linter |
---|
160 | toc = tic() |
---|
161 | for _ in range(max(Nevals, 1)): # make sure there is at least one eval |
---|
162 | if hasattr(data, 'qx_data'): |
---|
163 | q = np.sqrt(data.qx_data**2 + data.qy_data**2) |
---|
164 | index = ((~data.mask) & (~np.isnan(data.data)) |
---|
165 | & (q >= data.qmin) & (q <= data.qmax)) |
---|
166 | if smearer is not None: |
---|
167 | smearer.model = model # because smear_selection has a bug |
---|
168 | smearer.accuracy = data.accuracy |
---|
169 | smearer.set_index(index) |
---|
170 | value = smearer.get_value() |
---|
171 | else: |
---|
172 | value = model.evalDistribution([data.qx_data[index], data.qy_data[index]]) |
---|
173 | else: |
---|
174 | value = model.evalDistribution(data.x) |
---|
175 | if smearer is not None: |
---|
176 | value = smearer(value) |
---|
177 | average_time = toc()*1000./Nevals |
---|
178 | return value, average_time |
---|
179 | |
---|
180 | def eval_opencl(model_definition, pars, data, dtype='single', Nevals=1, cutoff=0.): |
---|
181 | try: |
---|
182 | model = core.load_model(model_definition, dtype=dtype, platform="ocl") |
---|
183 | except Exception,exc: |
---|
184 | print exc |
---|
185 | print "... trying again with single precision" |
---|
186 | model = core.load_model(model_definition, dtype='single', platform="ocl") |
---|
187 | calculator = DirectModel(data, model, cutoff=cutoff) |
---|
188 | value = None # silence the linter |
---|
189 | toc = tic() |
---|
190 | for _ in range(max(Nevals, 1)): # force at least one eval |
---|
191 | value = calculator(**pars) |
---|
192 | average_time = toc()*1000./Nevals |
---|
193 | return value, average_time |
---|
194 | |
---|
195 | |
---|
196 | def eval_ctypes(model_definition, pars, data, dtype='double', Nevals=1, cutoff=0.): |
---|
197 | model = core.load_model(model_definition, dtype=dtype, platform="dll") |
---|
198 | calculator = DirectModel(data, model, cutoff=cutoff) |
---|
199 | value = None # silence the linter |
---|
200 | toc = tic() |
---|
201 | for _ in range(max(Nevals, 1)): # force at least one eval |
---|
202 | value = calculator(**pars) |
---|
203 | average_time = toc()*1000./Nevals |
---|
204 | return value, average_time |
---|
205 | |
---|
206 | |
---|
207 | def make_data(qmax, is2D, Nq=128, resolution=0.0, accuracy='Low', view='log'): |
---|
208 | if is2D: |
---|
209 | data = empty_data2D(np.linspace(-qmax, qmax, Nq), resolution=resolution) |
---|
210 | data.accuracy = accuracy |
---|
211 | set_beam_stop(data, 0.004) |
---|
212 | index = ~data.mask |
---|
213 | else: |
---|
214 | if view == 'log': |
---|
215 | qmax = math.log10(qmax) |
---|
216 | q = np.logspace(qmax-3, qmax, Nq) |
---|
217 | else: |
---|
218 | q = np.linspace(0.001*qmax, qmax, Nq) |
---|
219 | data = empty_data1D(q, resolution=resolution) |
---|
220 | index = slice(None, None) |
---|
221 | return data, index |
---|
222 | |
---|
223 | def compare(name, pars, Ncpu, Nocl, opts, set_pars): |
---|
224 | model_definition = core.load_model_definition(name) |
---|
225 | |
---|
226 | view = 'linear' if '-linear' in opts else 'log' if '-log' in opts else 'q4' if '-q4' in opts else 'log' |
---|
227 | |
---|
228 | opt_values = dict(split |
---|
229 | for s in opts for split in ((s.split('='),)) |
---|
230 | if len(split) == 2) |
---|
231 | # Sort out data |
---|
232 | qmax = 10.0 if '-exq' in opts else 1.0 if '-highq' in opts else 0.2 if '-midq' in opts else 0.05 |
---|
233 | Nq = int(opt_values.get('-Nq', '128')) |
---|
234 | res = float(opt_values.get('-res', '0')) |
---|
235 | accuracy = opt_values.get('-accuracy', 'Low') |
---|
236 | is2D = "-2d" in opts |
---|
237 | data, index = make_data(qmax, is2D, Nq, res, accuracy, view=view) |
---|
238 | |
---|
239 | |
---|
240 | # modelling accuracy is determined by dtype and cutoff |
---|
241 | dtype = 'double' if '-double' in opts else 'single' |
---|
242 | cutoff = float(opt_values.get('-cutoff','1e-5')) |
---|
243 | |
---|
244 | # randomize parameters |
---|
245 | #pars.update(set_pars) # set value before random to control range |
---|
246 | if '-random' in opts or '-random' in opt_values: |
---|
247 | seed = int(opt_values['-random']) if '-random' in opt_values else None |
---|
248 | pars, seed = randomize_model(pars, seed=seed) |
---|
249 | constrain_pars(model_definition, pars) |
---|
250 | print "Randomize using -random=%i"%seed |
---|
251 | pars.update(set_pars) # set value after random to control value |
---|
252 | |
---|
253 | # parameter selection |
---|
254 | if '-mono' in opts: |
---|
255 | suppress_pd(pars) |
---|
256 | if '-pars' in opts: |
---|
257 | print "pars",parlist(pars) |
---|
258 | |
---|
259 | # OpenCl calculation |
---|
260 | if Nocl > 0: |
---|
261 | ocl, ocl_time = eval_opencl(model_definition, pars, data, |
---|
262 | dtype=dtype, cutoff=cutoff, Nevals=Nocl) |
---|
263 | print "opencl t=%.1f ms, intensity=%.0f"%(ocl_time, sum(ocl)) |
---|
264 | #print "ocl", ocl |
---|
265 | #print max(ocl), min(ocl) |
---|
266 | |
---|
267 | # ctypes/sasview calculation |
---|
268 | if Ncpu > 0 and "-ctypes" in opts: |
---|
269 | cpu, cpu_time = eval_ctypes(model_definition, pars, data, |
---|
270 | dtype=dtype, cutoff=cutoff, Nevals=Ncpu) |
---|
271 | comp = "ctypes" |
---|
272 | print "ctypes t=%.1f ms, intensity=%.0f"%(cpu_time, sum(cpu)) |
---|
273 | elif Ncpu > 0: |
---|
274 | try: |
---|
275 | cpu, cpu_time = eval_sasview(model_definition, pars, data, Ncpu) |
---|
276 | comp = "sasview" |
---|
277 | #print "ocl/sasview", (ocl-pars['background'])/(cpu-pars['background']) |
---|
278 | print "sasview t=%.1f ms, intensity=%.0f"%(cpu_time, sum(cpu)) |
---|
279 | #print "sasview",cpu |
---|
280 | except ImportError: |
---|
281 | traceback.print_exc() |
---|
282 | Ncpu = 0 |
---|
283 | |
---|
284 | # Compare, but only if computing both forms |
---|
285 | if Nocl > 0 and Ncpu > 0: |
---|
286 | #print "speedup %.2g"%(cpu_time/ocl_time) |
---|
287 | #print "max |ocl/cpu|", max(abs(ocl/cpu)), "%.15g"%max(abs(ocl)), "%.15g"%max(abs(cpu)) |
---|
288 | #cpu *= max(ocl/cpu) |
---|
289 | resid = (ocl - cpu) |
---|
290 | relerr = resid/cpu |
---|
291 | #bad = (relerr>1e-4) |
---|
292 | #print relerr[bad],cpu[bad],ocl[bad],data.qx_data[bad],data.qy_data[bad] |
---|
293 | _print_stats("|ocl-%s|"%comp+(" "*(3+len(comp))), resid) |
---|
294 | _print_stats("|(ocl-%s)/%s|"%(comp,comp), relerr) |
---|
295 | |
---|
296 | # Plot if requested |
---|
297 | if '-noplot' in opts: return |
---|
298 | import matplotlib.pyplot as plt |
---|
299 | if Ncpu > 0: |
---|
300 | if Nocl > 0: plt.subplot(131) |
---|
301 | plot_theory(data, cpu, view=view, plot_data=False) |
---|
302 | plt.title("%s t=%.1f ms"%(comp,cpu_time)) |
---|
303 | #cbar_title = "log I" |
---|
304 | if Nocl > 0: |
---|
305 | if Ncpu > 0: plt.subplot(132) |
---|
306 | plot_theory(data, ocl, view=view, plot_data=False) |
---|
307 | plt.title("opencl t=%.1f ms"%ocl_time) |
---|
308 | #cbar_title = "log I" |
---|
309 | if Ncpu > 0 and Nocl > 0: |
---|
310 | plt.subplot(133) |
---|
311 | if '-abs' in opts: |
---|
312 | err,errstr,errview = resid, "abs err", "linear" |
---|
313 | else: |
---|
314 | err,errstr,errview = abs(relerr), "rel err", "log" |
---|
315 | #err,errstr = ocl/cpu,"ratio" |
---|
316 | plot_theory(data, None, resid=err, view=errview, plot_data=False) |
---|
317 | plt.title("max %s = %.3g"%(errstr, max(abs(err)))) |
---|
318 | #cbar_title = errstr if errview=="linear" else "log "+errstr |
---|
319 | #if is2D: |
---|
320 | # h = plt.colorbar() |
---|
321 | # h.ax.set_title(cbar_title) |
---|
322 | |
---|
323 | if Ncpu > 0 and Nocl > 0 and '-hist' in opts: |
---|
324 | plt.figure() |
---|
325 | v = relerr |
---|
326 | v[v==0] = 0.5*np.min(np.abs(v[v!=0])) |
---|
327 | plt.hist(np.log10(np.abs(v)), normed=1, bins=50); |
---|
328 | plt.xlabel('log10(err), err = | F(q) single - F(q) double| / | F(q) double |'); |
---|
329 | plt.ylabel('P(err)') |
---|
330 | plt.title('Comparison of single and double precision models for %s'%name) |
---|
331 | |
---|
332 | plt.show() |
---|
333 | |
---|
334 | def _print_stats(label, err): |
---|
335 | sorted_err = np.sort(abs(err)) |
---|
336 | p50 = int((len(err)-1)*0.50) |
---|
337 | p98 = int((len(err)-1)*0.98) |
---|
338 | data = [ |
---|
339 | "max:%.3e"%sorted_err[-1], |
---|
340 | "median:%.3e"%sorted_err[p50], |
---|
341 | "98%%:%.3e"%sorted_err[p98], |
---|
342 | "rms:%.3e"%np.sqrt(np.mean(err**2)), |
---|
343 | "zero-offset:%+.3e"%np.mean(err), |
---|
344 | ] |
---|
345 | print label," ".join(data) |
---|
346 | |
---|
347 | |
---|
348 | |
---|
349 | # =========================================================================== |
---|
350 | # |
---|
351 | USAGE=""" |
---|
352 | usage: compare.py model [Nopencl] [Nsasview] [options...] [key=val] |
---|
353 | |
---|
354 | Compare the speed and value for a model between the SasView original and the |
---|
355 | OpenCL rewrite. |
---|
356 | |
---|
357 | model is the name of the model to compare (see below). |
---|
358 | Nopencl is the number of times to run the OpenCL model (default=5) |
---|
359 | Nsasview is the number of times to run the Sasview model (default=1) |
---|
360 | |
---|
361 | Options (* for default): |
---|
362 | |
---|
363 | -plot*/-noplot plots or suppress the plot of the model |
---|
364 | -single*/-double uses double precision for comparison |
---|
365 | -lowq*/-midq/-highq/-exq use q values up to 0.05, 0.2, 1.0, 10.0 |
---|
366 | -Nq=128 sets the number of Q points in the data set |
---|
367 | -1d*/-2d computes 1d or 2d data |
---|
368 | -preset*/-random[=seed] preset or random parameters |
---|
369 | -mono/-poly* force monodisperse/polydisperse |
---|
370 | -ctypes/-sasview* whether cpu is tested using sasview or ctypes |
---|
371 | -cutoff=1e-5* cutoff value for including a point in polydispersity |
---|
372 | -pars/-nopars* prints the parameter set or not |
---|
373 | -abs/-rel* plot relative or absolute error |
---|
374 | -linear/-log/-q4 intensity scaling |
---|
375 | -hist/-nohist* plot histogram of relative error |
---|
376 | -res=0 sets the resolution width dQ/Q if calculating with resolution |
---|
377 | -accuracy=Low resolution accuracy Low, Mid, High, Xhigh |
---|
378 | |
---|
379 | Key=value pairs allow you to set specific values to any of the model |
---|
380 | parameters. |
---|
381 | |
---|
382 | Available models: |
---|
383 | """ |
---|
384 | |
---|
385 | |
---|
386 | NAME_OPTIONS = set([ |
---|
387 | 'plot','noplot', |
---|
388 | 'single','double', |
---|
389 | 'lowq','midq','highq','exq', |
---|
390 | '2d','1d', |
---|
391 | 'preset','random', |
---|
392 | 'poly','mono', |
---|
393 | 'sasview','ctypes', |
---|
394 | 'nopars','pars', |
---|
395 | 'rel','abs', |
---|
396 | 'linear', 'log', 'q4', |
---|
397 | 'hist','nohist', |
---|
398 | ]) |
---|
399 | VALUE_OPTIONS = [ |
---|
400 | # Note: random is both a name option and a value option |
---|
401 | 'cutoff', 'random', 'Nq', 'res', 'accuracy', |
---|
402 | ] |
---|
403 | |
---|
404 | def columnize(L, indent="", width=79): |
---|
405 | column_width = max(len(w) for w in L) + 1 |
---|
406 | num_columns = (width - len(indent)) // column_width |
---|
407 | num_rows = len(L) // num_columns |
---|
408 | L = L + [""] * (num_rows*num_columns - len(L)) |
---|
409 | columns = [L[k*num_rows:(k+1)*num_rows] for k in range(num_columns)] |
---|
410 | lines = [" ".join("%-*s"%(column_width, entry) for entry in row) |
---|
411 | for row in zip(*columns)] |
---|
412 | output = indent + ("\n"+indent).join(lines) |
---|
413 | return output |
---|
414 | |
---|
415 | |
---|
416 | def get_demo_pars(model_definition): |
---|
417 | info = generate.make_info(model_definition) |
---|
418 | pars = dict((p[0],p[2]) for p in info['parameters']) |
---|
419 | pars.update(info['demo']) |
---|
420 | return pars |
---|
421 | |
---|
422 | def main(): |
---|
423 | opts = [arg for arg in sys.argv[1:] if arg.startswith('-')] |
---|
424 | args = [arg for arg in sys.argv[1:] if not arg.startswith('-')] |
---|
425 | models = "\n ".join("%-15s"%v for v in MODELS) |
---|
426 | if len(args) == 0: |
---|
427 | print(USAGE) |
---|
428 | print(columnize(MODELS, indent=" ")) |
---|
429 | sys.exit(1) |
---|
430 | if args[0] not in MODELS: |
---|
431 | print "Model %r not available. Use one of:\n %s"%(args[0],models) |
---|
432 | sys.exit(1) |
---|
433 | |
---|
434 | invalid = [o[1:] for o in opts |
---|
435 | if o[1:] not in NAME_OPTIONS |
---|
436 | and not any(o.startswith('-%s='%t) for t in VALUE_OPTIONS)] |
---|
437 | if invalid: |
---|
438 | print "Invalid options: %s"%(", ".join(invalid)) |
---|
439 | sys.exit(1) |
---|
440 | |
---|
441 | # Get demo parameters from model definition, or use default parameters |
---|
442 | # if model does not define demo parameters |
---|
443 | name = args[0] |
---|
444 | model_definition = core.load_model_definition(name) |
---|
445 | pars = get_demo_pars(model_definition) |
---|
446 | |
---|
447 | Nopencl = int(args[1]) if len(args) > 1 else 5 |
---|
448 | Nsasview = int(args[2]) if len(args) > 2 else 1 |
---|
449 | |
---|
450 | # Fill in default polydispersity parameters |
---|
451 | pds = set(p.split('_pd')[0] for p in pars if p.endswith('_pd')) |
---|
452 | for p in pds: |
---|
453 | if p+"_pd_nsigma" not in pars: pars[p+"_pd_nsigma"] = 3 |
---|
454 | if p+"_pd_type" not in pars: pars[p+"_pd_type"] = "gaussian" |
---|
455 | |
---|
456 | # Fill in parameters given on the command line |
---|
457 | set_pars = {} |
---|
458 | for arg in args[3:]: |
---|
459 | k,v = arg.split('=') |
---|
460 | if k not in pars: |
---|
461 | # extract base name without distribution |
---|
462 | s = set(p.split('_pd')[0] for p in pars) |
---|
463 | print "%r invalid; parameters are: %s"%(k,", ".join(sorted(s))) |
---|
464 | sys.exit(1) |
---|
465 | set_pars[k] = float(v) if not v.endswith('type') else v |
---|
466 | |
---|
467 | compare(name, pars, Nsasview, Nopencl, opts, set_pars) |
---|
468 | |
---|
469 | if __name__ == "__main__": |
---|
470 | main() |
---|