1 | """ |
---|
2 | Wrap sasmodels for direct use by bumps. |
---|
3 | |
---|
4 | :class:`Model` is a wrapper for the sasmodels kernel which defines a |
---|
5 | bumps *Parameter* box for each kernel parameter. *Model* accepts keyword |
---|
6 | arguments to set the initial value for each parameter. |
---|
7 | |
---|
8 | :class:`Experiment` combines the *Model* function with a data file loaded by |
---|
9 | the sasview data loader. *Experiment* takes a *cutoff* parameter controlling |
---|
10 | how far the polydispersity integral extends. |
---|
11 | |
---|
12 | """ |
---|
13 | from __future__ import print_function |
---|
14 | |
---|
15 | __all__ = ["Model", "Experiment"] |
---|
16 | |
---|
17 | import numpy as np # type: ignore |
---|
18 | |
---|
19 | from .data import plot_theory |
---|
20 | from .direct_model import DataMixin |
---|
21 | |
---|
22 | # pylint: disable=unused-import |
---|
23 | try: |
---|
24 | from typing import Dict, Union, Tuple, Any |
---|
25 | from .data import Data1D, Data2D |
---|
26 | from .kernel import KernelModel |
---|
27 | from .modelinfo import ModelInfo |
---|
28 | Data = Union[Data1D, Data2D] |
---|
29 | except ImportError: |
---|
30 | pass |
---|
31 | # pylint: enable=unused-import |
---|
32 | |
---|
33 | try: |
---|
34 | # Optional import. This allows the doc builder and nosetests to run even |
---|
35 | # when bumps is not on the path. |
---|
36 | from bumps.names import Parameter # type: ignore |
---|
37 | except ImportError: |
---|
38 | pass |
---|
39 | |
---|
40 | |
---|
41 | def create_parameters(model_info, # type: ModelInfo |
---|
42 | **kwargs # type: Union[float, str, Parameter] |
---|
43 | ): |
---|
44 | # type: (...) -> Tuple[Dict[str, Parameter], Dict[str, str]] |
---|
45 | """ |
---|
46 | Generate Bumps parameters from the model info. |
---|
47 | |
---|
48 | *model_info* is returned from :func:`generate.model_info` on the |
---|
49 | model definition module. |
---|
50 | |
---|
51 | Any additional *key=value* pairs are initial values for the parameters |
---|
52 | to the models. Uninitialized parameters will use the model default |
---|
53 | value. The value can be a float, a bumps parameter, or in the case |
---|
54 | of the distribution type parameter, a string. |
---|
55 | |
---|
56 | Returns a dictionary of *{name: Parameter}* containing the bumps |
---|
57 | parameters for each model parameter, and a dictionary of |
---|
58 | *{name: str}* containing the polydispersity distribution types. |
---|
59 | """ |
---|
60 | pars = {} # type: Dict[str, Parameter] |
---|
61 | pd_types = {} # type: Dict[str, str] |
---|
62 | for p in model_info.parameters.call_parameters: |
---|
63 | value = kwargs.pop(p.name, p.default) |
---|
64 | pars[p.name] = Parameter.default(value, name=p.name, limits=p.limits) |
---|
65 | if p.polydisperse: |
---|
66 | for part, default, limits in [ |
---|
67 | ('_pd', 0., pars[p.name].limits), |
---|
68 | ('_pd_n', 35., (0, 1000)), |
---|
69 | ('_pd_nsigma', 3., (0, 10)), |
---|
70 | ]: |
---|
71 | name = p.name + part |
---|
72 | value = kwargs.pop(name, default) |
---|
73 | pars[name] = Parameter.default(value, name=name, limits=limits) |
---|
74 | name = p.name + '_pd_type' |
---|
75 | pd_types[name] = str(kwargs.pop(name, 'gaussian')) |
---|
76 | |
---|
77 | if kwargs: # args not corresponding to parameters |
---|
78 | raise TypeError("unexpected parameters: %s" |
---|
79 | % (", ".join(sorted(kwargs.keys())))) |
---|
80 | |
---|
81 | return pars, pd_types |
---|
82 | |
---|
83 | class Model(object): |
---|
84 | """ |
---|
85 | Bumps wrapper for a SAS model. |
---|
86 | |
---|
87 | *model* is a runnable module as returned from :func:`core.load_model`. |
---|
88 | |
---|
89 | *cutoff* is the polydispersity weight cutoff. |
---|
90 | |
---|
91 | Any additional *key=value* pairs are model dependent parameters. |
---|
92 | """ |
---|
93 | def __init__(self, model, **kwargs): |
---|
94 | # type: (KernelModel, **Dict[str, Union[float, Parameter]]) -> None |
---|
95 | self.sasmodel = model |
---|
96 | pars, pd_types = create_parameters(model.info, **kwargs) |
---|
97 | for k, v in pars.items(): |
---|
98 | setattr(self, k, v) |
---|
99 | for k, v in pd_types.items(): |
---|
100 | setattr(self, k, v) |
---|
101 | self._parameter_names = list(pars.keys()) |
---|
102 | self._pd_type_names = list(pd_types.keys()) |
---|
103 | |
---|
104 | def parameters(self): |
---|
105 | # type: () -> Dict[str, Parameter] |
---|
106 | """ |
---|
107 | Return a dictionary of parameters objects for the parameters, |
---|
108 | excluding polydispersity distribution type. |
---|
109 | """ |
---|
110 | return dict((k, getattr(self, k)) for k in self._parameter_names) |
---|
111 | |
---|
112 | def state(self): |
---|
113 | # type: () -> Dict[str, Union[Parameter, str]] |
---|
114 | """ |
---|
115 | Return a dictionary of current values for all the parameters, |
---|
116 | including polydispersity distribution type. |
---|
117 | """ |
---|
118 | pars = dict((k, getattr(self, k).value) for k in self._parameter_names) |
---|
119 | pars.update((k, getattr(self, k)) for k in self._pd_type_names) |
---|
120 | return pars |
---|
121 | |
---|
122 | class Experiment(DataMixin): |
---|
123 | r""" |
---|
124 | Bumps wrapper for a SAS experiment. |
---|
125 | |
---|
126 | *data* is a :class:`data.Data1D`, :class:`data.Data2D` or |
---|
127 | :class:`data.Sesans` object. Use :func:`data.empty_data1D` or |
---|
128 | :func:`data.empty_data2D` to define $q, \Delta q$ calculation |
---|
129 | points for displaying the SANS curve when there is no measured data. |
---|
130 | |
---|
131 | *model* is a :class:`Model` object. |
---|
132 | |
---|
133 | *cutoff* is the integration cutoff, which avoids computing the |
---|
134 | the SAS model where the polydispersity weight is low. |
---|
135 | |
---|
136 | The resulting model can be used directly in a Bumps FitProblem call. |
---|
137 | """ |
---|
138 | _cache = None # type: Dict[str, np.ndarray] |
---|
139 | def __init__(self, data, model, cutoff=1e-5, name=None): |
---|
140 | # type: (Data, Model, float) -> None |
---|
141 | # remember inputs so we can inspect from outside |
---|
142 | self.name = data.filename if name is None else name |
---|
143 | self.model = model |
---|
144 | self.cutoff = cutoff |
---|
145 | self._interpret_data(data, model.sasmodel) |
---|
146 | self._cache = {} |
---|
147 | |
---|
148 | def update(self): |
---|
149 | # type: () -> None |
---|
150 | """ |
---|
151 | Call when model parameters have changed and theory needs to be |
---|
152 | recalculated. |
---|
153 | """ |
---|
154 | self._cache.clear() |
---|
155 | |
---|
156 | def numpoints(self): |
---|
157 | # type: () -> float |
---|
158 | """ |
---|
159 | Return the number of data points |
---|
160 | """ |
---|
161 | return len(self.Iq) |
---|
162 | |
---|
163 | def parameters(self): |
---|
164 | # type: () -> Dict[str, Parameter] |
---|
165 | """ |
---|
166 | Return a dictionary of parameters |
---|
167 | """ |
---|
168 | return self.model.parameters() |
---|
169 | |
---|
170 | def theory(self): |
---|
171 | # type: () -> np.ndarray |
---|
172 | """ |
---|
173 | Return the theory corresponding to the model parameters. |
---|
174 | |
---|
175 | This method uses lazy evaluation, and requires model.update() to be |
---|
176 | called when the parameters have changed. |
---|
177 | """ |
---|
178 | if 'theory' not in self._cache: |
---|
179 | pars = self.model.state() |
---|
180 | self._cache['theory'] = self._calc_theory(pars, cutoff=self.cutoff) |
---|
181 | return self._cache['theory'] |
---|
182 | |
---|
183 | def residuals(self): |
---|
184 | # type: () -> np.ndarray |
---|
185 | """ |
---|
186 | Return theory minus data normalized by uncertainty. |
---|
187 | """ |
---|
188 | #if np.any(self.err ==0): print("zeros in err") |
---|
189 | return (self.theory() - self.Iq) / self.dIq |
---|
190 | |
---|
191 | def nllf(self): |
---|
192 | # type: () -> float |
---|
193 | """ |
---|
194 | Return the negative log likelihood of seeing data given the model |
---|
195 | parameters, up to a normalizing constant which depends on the data |
---|
196 | uncertainty. |
---|
197 | """ |
---|
198 | delta = self.residuals() |
---|
199 | #if np.any(np.isnan(R)): print("NaN in residuals") |
---|
200 | return 0.5 * np.sum(delta**2) |
---|
201 | |
---|
202 | #def __call__(self): |
---|
203 | # return 2 * self.nllf() / self.dof |
---|
204 | |
---|
205 | def plot(self, view='log'): |
---|
206 | # type: (str) -> None |
---|
207 | """ |
---|
208 | Plot the data and residuals. |
---|
209 | """ |
---|
210 | data, theory, resid = self._data, self.theory(), self.residuals() |
---|
211 | # TODO: hack to display oriented usans 2-D pattern |
---|
212 | Iq_calc = self.Iq_calc if isinstance(self.Iq_calc, tuple) else None |
---|
213 | plot_theory(data, theory, resid, view, Iq_calc=Iq_calc) |
---|
214 | |
---|
215 | def simulate_data(self, noise=None): |
---|
216 | # type: (float) -> None |
---|
217 | """ |
---|
218 | Generate simulated data. |
---|
219 | """ |
---|
220 | Iq = self.theory() |
---|
221 | self._set_data(Iq, noise) |
---|
222 | |
---|
223 | def save(self, basename): |
---|
224 | # type: (str) -> None |
---|
225 | """ |
---|
226 | Save the model parameters and data into a file. |
---|
227 | |
---|
228 | Not Implemented. |
---|
229 | """ |
---|
230 | if self.data_type == "sesans": |
---|
231 | np.savetxt(basename+".dat", np.array([self._data.x, self.theory()]).T) |
---|
232 | |
---|
233 | def __getstate__(self): |
---|
234 | # type: () -> Dict[str, Any] |
---|
235 | # Can't pickle gpu functions, so instead make them lazy |
---|
236 | state = self.__dict__.copy() |
---|
237 | state['_kernel'] = None |
---|
238 | return state |
---|
239 | |
---|
240 | def __setstate__(self, state): |
---|
241 | # type: (Dict[str, Any]) -> None |
---|
242 | # pylint: disable=attribute-defined-outside-init |
---|
243 | self.__dict__ = state |
---|