[9a9f5b5] | 1 | #!/usr/bin/env python |
---|
| 2 | # -*- coding: utf-8 -*- |
---|
| 3 | |
---|
| 4 | from bumps.names import * |
---|
| 5 | from code_lamellar import GpuLamellar |
---|
| 6 | from code_ellipse import GpuEllipse |
---|
[d772f5d] | 7 | from multisasmodels import SasModel, load_data, set_beam_stop, set_half |
---|
[9a9f5b5] | 8 | import numpy as np |
---|
| 9 | |
---|
[d772f5d] | 10 | data = load_data('DEC07282.DAT') |
---|
[9a9f5b5] | 11 | set_beam_stop(data, 0.0052)#, outer=0.025) |
---|
| 12 | #set_half(data, 'left') |
---|
| 13 | |
---|
| 14 | truth = SasModel(data, GpuEllipse, |
---|
[d772f5d] | 15 | scale=.0011, radius_a=45.265, radius_b=600.8, sldEll=.291e-6, sldSolv=7.105e-6, |
---|
[9a9f5b5] | 16 | background=8.30161, axis_theta=0, axis_phi=0, |
---|
| 17 | radius_a_pd=0.222296, radius_a_pd_n=1, radius_a_pd_nsigma=0, |
---|
| 18 | radius_b_pd=.000128, radius_b_pd_n=1, radius_b_pd_nsigma=0, |
---|
| 19 | axis_theta_pd=20, axis_theta_pd_n=40, axis_theta_pd_nsigma=3, |
---|
| 20 | axis_phi_pd=2.63698e-05, axis_phi_pd_n=20, axis_phi_pd_nsigma=0, |
---|
| 21 | dtype='float') |
---|
| 22 | |
---|
| 23 | #model.radius_a.range(15, 1000) |
---|
| 24 | #model.radius_b.range(15, 1000) |
---|
| 25 | #model.axis_theta_pd.range(0, 360) |
---|
| 26 | #model.background.range(0,1000) |
---|
| 27 | #truth.scale.range(0, 1) |
---|
| 28 | |
---|
| 29 | arrayone = truth.theory() |
---|
| 30 | |
---|
| 31 | |
---|
| 32 | lies = SasModel(data, GpuLamellar, scale=0, bi_thick=5, sld_bi=.291e-6, sld_sol=5.77e-6, background=85.23, |
---|
| 33 | bi_thick_pd= 0.0013, bi_thick_pd_n=5, bi_thick_pd_nsigma=3, dtype='float') |
---|
| 34 | |
---|
| 35 | |
---|
| 36 | #modeltwo.bi_thick.range(0, 1000) |
---|
| 37 | #modeltwo.scale.range(0, 1) |
---|
| 38 | #model.bi_thick_pd.range(0, 1000) |
---|
| 39 | #model.background.range(0, 1000) |
---|
| 40 | |
---|
| 41 | |
---|
| 42 | arraytwo = lies.theory() |
---|
| 43 | |
---|
| 44 | |
---|
| 45 | a = np.add(np.multiply(arrayone, .5), np.multiply(arraytwo, 0)) |
---|
| 46 | truth.set_result(a) |
---|
| 47 | |
---|
| 48 | |
---|
| 49 | problem = FitProblem(truth) |
---|
| 50 | |
---|