1 | """ |
---|
2 | Explore integration of rotationally symmetric shapes |
---|
3 | """ |
---|
4 | |
---|
5 | from __future__ import print_function, division |
---|
6 | |
---|
7 | import os, sys |
---|
8 | sys.path.insert(0, os.path.dirname(os.path.dirname(__file__))) |
---|
9 | |
---|
10 | import numpy as np |
---|
11 | from numpy import pi, sin, cos, sqrt, exp, expm1, degrees, log10 |
---|
12 | from scipy.integrate import dblquad, simps, romb, romberg |
---|
13 | from scipy.special.orthogonal import p_roots |
---|
14 | import pylab |
---|
15 | |
---|
16 | from sasmodels.special import square |
---|
17 | from sasmodels.special import Gauss20Wt, Gauss20Z |
---|
18 | from sasmodels.special import Gauss76Wt, Gauss76Z |
---|
19 | from sasmodels.special import Gauss150Wt, Gauss150Z |
---|
20 | from sasmodels.special import sas_2J1x_x, sas_sinx_x, sas_3j1x_x |
---|
21 | |
---|
22 | SLD = 3.0 |
---|
23 | SLD_SOLVENT = 6.3 |
---|
24 | CONTRAST = SLD - SLD_SOLVENT |
---|
25 | |
---|
26 | def make_cylinder(radius, length): |
---|
27 | def cylinder(qab, qc): |
---|
28 | return sas_2J1x_x(qab*radius) * sas_sinx_x(qc*0.5*length) |
---|
29 | cylinder.__doc__ = "cylinder radius=%g, length=%g"%(radius, length) |
---|
30 | volume = pi*radius**2*length |
---|
31 | norm = 1e-4*volume*CONTRAST**2 |
---|
32 | return norm, cylinder |
---|
33 | |
---|
34 | def make_long_cylinder(radius, length): |
---|
35 | def long_cylinder(q): |
---|
36 | return norm/q * sas_2J1x_x(q*radius)**2 |
---|
37 | long_cylinder.__doc__ = "long cylinder radius=%g, length=%g"%(radius, length) |
---|
38 | volume = pi*radius**2*length |
---|
39 | norm = 1e-4*volume*CONTRAST**2*pi/length |
---|
40 | return long_cylinder |
---|
41 | |
---|
42 | def make_sphere(radius): |
---|
43 | def sphere(qab, qc): |
---|
44 | q = sqrt(qab**2 + qc**2) |
---|
45 | return sas_3j1x_x(q*radius) |
---|
46 | sphere.__doc__ = "sphere radius=%g"%(radius,) |
---|
47 | volume = 4*pi*radius**3/3 |
---|
48 | norm = 1e-4*volume*CONTRAST**2 |
---|
49 | return norm, sphere |
---|
50 | |
---|
51 | THETA_LOW, THETA_HIGH = 0, pi/2 |
---|
52 | SCALE = 1 |
---|
53 | |
---|
54 | |
---|
55 | def kernel(q, theta): |
---|
56 | """ |
---|
57 | S(q) kernel for paracrystal forms. |
---|
58 | """ |
---|
59 | qab = q*sin(theta) |
---|
60 | qc = q*cos(theta) |
---|
61 | return NORM*KERNEL(qab, qc)**2 |
---|
62 | |
---|
63 | |
---|
64 | def gauss_quad(q, n=150): |
---|
65 | """ |
---|
66 | Compute the integral using gaussian quadrature for n = 20, 76 or 150. |
---|
67 | """ |
---|
68 | z, w = p_roots(n) |
---|
69 | theta = (THETA_HIGH-THETA_LOW)*(z + 1)/2 + THETA_LOW |
---|
70 | sin_theta = abs(sin(theta)) |
---|
71 | Zq = kernel(q=q, theta=theta) |
---|
72 | return np.sum(Zq*w*sin_theta)*(THETA_HIGH-THETA_LOW)/2 |
---|
73 | |
---|
74 | |
---|
75 | def gridded_integrals(q, n=300): |
---|
76 | """ |
---|
77 | Compute the integral on a regular grid using rectangular, trapezoidal, |
---|
78 | simpsons, and romberg integration. Romberg integration requires that |
---|
79 | the grid be of size n = 2**k + 1. |
---|
80 | """ |
---|
81 | theta = np.linspace(THETA_LOW, THETA_HIGH, n) |
---|
82 | Zq = kernel(q=q, theta=theta) |
---|
83 | Zq *= abs(sin(theta)) |
---|
84 | dx = theta[1]-theta[0] |
---|
85 | print("rect", n, np.sum(Zq)*dx*SCALE) |
---|
86 | print("trapz", n, np.trapz(Zq, dx=dx)*SCALE) |
---|
87 | print("simpson", n, simps(Zq, dx=dx)*SCALE) |
---|
88 | print("romb", n, romb(Zq, dx=dx)*SCALE) |
---|
89 | |
---|
90 | def scipy_romberg(q): |
---|
91 | """ |
---|
92 | Compute the integral using romberg integration. This function does not |
---|
93 | complete in a reasonable time. No idea if it is accurate. |
---|
94 | """ |
---|
95 | evals = [0] |
---|
96 | def outer(theta): |
---|
97 | evals[0] += 1 |
---|
98 | return kernel(q, theta=theta)*abs(sin(theta)) |
---|
99 | result = romberg(outer, THETA_LOW, THETA_HIGH, divmax=100)*SCALE |
---|
100 | print("scipy romberg", evals[0], result) |
---|
101 | |
---|
102 | def plot(q, n=300): |
---|
103 | """ |
---|
104 | Plot the 2D surface that needs to be integrated in order to compute |
---|
105 | the BCC S(q) at a particular q, dnn and d_factor. *n* is the number |
---|
106 | of points in the grid. |
---|
107 | """ |
---|
108 | theta = np.linspace(THETA_LOW, THETA_HIGH, n) |
---|
109 | Zq = kernel(q=q, theta=theta) |
---|
110 | Zq *= abs(sin(theta)) |
---|
111 | pylab.semilogy(degrees(theta), np.fmax(Zq, 1.e-6), label="Q=%g"%q) |
---|
112 | pylab.title("%s I(q, theta) sin(theta)" % (KERNEL.__doc__,)) |
---|
113 | pylab.xlabel("theta (degrees)") |
---|
114 | pylab.ylabel("Iq 1/cm") |
---|
115 | |
---|
116 | def Iq_trapz(q, n): |
---|
117 | theta = np.linspace(THETA_LOW, THETA_HIGH, n) |
---|
118 | Zq = kernel(q=q, theta=theta) |
---|
119 | Zq *= abs(sin(theta)) |
---|
120 | dx = theta[1]-theta[0] |
---|
121 | return np.trapz(Zq, dx=dx)*SCALE |
---|
122 | |
---|
123 | def plot_Iq(q, n, form="trapz"): |
---|
124 | if form == "trapz": |
---|
125 | Iq = np.array([Iq_trapz(qk, n) for qk in q]) |
---|
126 | elif form == "gauss": |
---|
127 | Iq = np.array([gauss_quad(qk, n) for qk in q]) |
---|
128 | pylab.loglog(q, Iq, label="%s, n=%d"%(form, n)) |
---|
129 | pylab.xlabel("q (1/A)") |
---|
130 | pylab.ylabel("Iq (1/cm)") |
---|
131 | pylab.title(KERNEL.__doc__ + " I(q) circular average") |
---|
132 | return Iq |
---|
133 | |
---|
134 | radius = 10. |
---|
135 | length = 1e5 |
---|
136 | NORM, KERNEL = make_cylinder(radius=radius, length=length) |
---|
137 | long_cyl = make_long_cylinder(radius=radius, length=length) |
---|
138 | #NORM, KERNEL = make_sphere(radius=50.) |
---|
139 | |
---|
140 | |
---|
141 | if __name__ == "__main__": |
---|
142 | Q = 0.386 |
---|
143 | for n in (20, 76, 150, 300, 1000): #, 10000, 30000): |
---|
144 | print("gauss", n, gauss_quad(Q, n=n)) |
---|
145 | for k in (8, 10, 13, 16, 19): |
---|
146 | gridded_integrals(Q, n=2**k+1) |
---|
147 | #print("inf cyl", 0, long_cyl(Q)) |
---|
148 | #scipy_romberg(Q) |
---|
149 | |
---|
150 | plot(0.386, n=2000) |
---|
151 | plot(0.5, n=2000) |
---|
152 | plot(0.8, n=2000) |
---|
153 | pylab.legend() |
---|
154 | pylab.figure() |
---|
155 | |
---|
156 | q = np.logspace(-3, 0, 400) |
---|
157 | I1 = long_cyl(q) |
---|
158 | I2 = plot_Iq(q, n=2**19+1, form="trapz") |
---|
159 | #plot_Iq(q, n=2**16+1, form="trapz") |
---|
160 | #plot_Iq(q, n=2**10+1, form="trapz") |
---|
161 | plot_Iq(q, n=1024, form="gauss") |
---|
162 | #plot_Iq(q, n=300, form="gauss") |
---|
163 | #plot_Iq(q, n=150, form="gauss") |
---|
164 | #plot_Iq(q, n=76, form="gauss") |
---|
165 | pylab.loglog(q, long_cyl(q), label="limit") |
---|
166 | pylab.legend() |
---|
167 | |
---|
168 | pylab.figure() |
---|
169 | pylab.semilogx(q, (I2 - I1)/I1) |
---|
170 | |
---|
171 | pylab.show() |
---|