[782dd1f] | 1 | """ |
---|
| 2 | Application to explore the difference between sasview 3.x orientation |
---|
| 3 | dispersity and possible replacement algorithms. |
---|
| 4 | """ |
---|
| 5 | import mpl_toolkits.mplot3d # Adds projection='3d' option to subplot |
---|
| 6 | import matplotlib.pyplot as plt |
---|
| 7 | from matplotlib.widgets import Slider, CheckButtons |
---|
| 8 | from matplotlib import cm |
---|
| 9 | |
---|
| 10 | import numpy as np |
---|
| 11 | from numpy import pi, cos, sin, sqrt, exp, degrees, radians |
---|
| 12 | |
---|
| 13 | def draw_beam(ax): |
---|
| 14 | #ax.plot([0,0],[0,0],[1,-1]) |
---|
| 15 | #ax.scatter([0]*100,[0]*100,np.linspace(1, -1, 100), alpha=0.8) |
---|
| 16 | |
---|
| 17 | steps = 25 |
---|
| 18 | u = np.linspace(0, 2 * np.pi, steps) |
---|
| 19 | v = np.linspace(-1, 1, steps) |
---|
| 20 | |
---|
| 21 | r = 0.02 |
---|
| 22 | x = r*np.outer(np.cos(u), np.ones_like(v)) |
---|
| 23 | y = r*np.outer(np.sin(u), np.ones_like(v)) |
---|
| 24 | z = np.outer(np.ones_like(u), v) |
---|
| 25 | |
---|
| 26 | ax.plot_surface(x, y, z, rstride=4, cstride=4, color='y', alpha=0.5) |
---|
| 27 | |
---|
| 28 | def draw_shimmy(ax, theta, phi, psi, dtheta, dphi, dpsi): |
---|
| 29 | size=[0.1, 0.4, 1.0] |
---|
| 30 | view=[theta, phi, psi] |
---|
| 31 | shimmy=[0,0,0] |
---|
| 32 | #draw_shape = draw_parallelepiped |
---|
| 33 | draw_shape = draw_ellipsoid |
---|
| 34 | |
---|
| 35 | #np.random.seed(10) |
---|
| 36 | #cloud = np.random.randn(10,3) |
---|
| 37 | cloud = [ |
---|
| 38 | [-1, -1, -1], |
---|
| 39 | [-1, -1, 0], |
---|
| 40 | [-1, -1, 1], |
---|
| 41 | [-1, 0, -1], |
---|
| 42 | [-1, 0, 0], |
---|
| 43 | [-1, 0, 1], |
---|
| 44 | [-1, 1, -1], |
---|
| 45 | [-1, 1, 0], |
---|
| 46 | [-1, 1, 1], |
---|
| 47 | [ 0, -1, -1], |
---|
| 48 | [ 0, -1, 0], |
---|
| 49 | [ 0, -1, 1], |
---|
| 50 | [ 0, 0, -1], |
---|
| 51 | [ 0, 0, 0], |
---|
| 52 | [ 0, 0, 1], |
---|
| 53 | [ 0, 1, -1], |
---|
| 54 | [ 0, 1, 0], |
---|
| 55 | [ 0, 1, 1], |
---|
| 56 | [ 1, -1, -1], |
---|
| 57 | [ 1, -1, 0], |
---|
| 58 | [ 1, -1, 1], |
---|
| 59 | [ 1, 0, -1], |
---|
| 60 | [ 1, 0, 0], |
---|
| 61 | [ 1, 0, 1], |
---|
| 62 | [ 1, 1, -1], |
---|
| 63 | [ 1, 1, 0], |
---|
| 64 | [ 1, 1, 1], |
---|
| 65 | ] |
---|
[1b693ba] | 66 | if dtheta == 0: |
---|
| 67 | cloud = [v for v in cloud if v[0] == 0] |
---|
| 68 | if dphi == 0: |
---|
| 69 | cloud = [v for v in cloud if v[1] == 0] |
---|
| 70 | if dpsi == 0: |
---|
| 71 | cloud = [v for v in cloud if v[2] == 0] |
---|
[782dd1f] | 72 | draw_shape(ax, size, view, shimmy, steps=100, alpha=0.8) |
---|
| 73 | for point in cloud: |
---|
| 74 | shimmy=[dtheta*point[0], dphi*point[1], dpsi*point[2]] |
---|
| 75 | draw_shape(ax, size, view, shimmy, alpha=0.8) |
---|
| 76 | for v in 'xyz': |
---|
| 77 | a, b, c = size |
---|
| 78 | lim = np.sqrt(a**2+b**2+c**2) |
---|
| 79 | getattr(ax, 'set_'+v+'lim')([-lim, lim]) |
---|
| 80 | getattr(ax, v+'axis').label.set_text(v) |
---|
| 81 | |
---|
| 82 | def draw_ellipsoid(ax, size, view, shimmy, steps=25, alpha=1): |
---|
| 83 | a,b,c = size |
---|
| 84 | theta, phi, psi = view |
---|
| 85 | dtheta, dphi, dpsi = shimmy |
---|
| 86 | |
---|
| 87 | u = np.linspace(0, 2 * np.pi, steps) |
---|
| 88 | v = np.linspace(0, np.pi, steps) |
---|
| 89 | x = a*np.outer(np.cos(u), np.sin(v)) |
---|
| 90 | y = b*np.outer(np.sin(u), np.sin(v)) |
---|
| 91 | z = c*np.outer(np.ones_like(u), np.cos(v)) |
---|
| 92 | |
---|
| 93 | shape = x.shape |
---|
| 94 | points = np.matrix([x.flatten(),y.flatten(),z.flatten()]) |
---|
| 95 | points = Rz(dpsi)*Ry(dtheta)*Rx(dphi)*points |
---|
| 96 | points = Rz(phi)*Ry(theta)*Rz(psi)*points |
---|
| 97 | x,y,z = [v.reshape(shape) for v in points] |
---|
| 98 | |
---|
| 99 | ax.plot_surface(x, y, z, rstride=4, cstride=4, color='w', alpha=alpha) |
---|
| 100 | |
---|
| 101 | def draw_parallelepiped(ax, size, view, shimmy, alpha=1): |
---|
| 102 | a,b,c = size |
---|
| 103 | theta, phi, psi = view |
---|
| 104 | dtheta, dphi, dpsi = shimmy |
---|
| 105 | |
---|
| 106 | x = a*np.array([ 1,-1, 1,-1, 1,-1, 1,-1]) |
---|
| 107 | y = b*np.array([ 1, 1,-1,-1, 1, 1,-1,-1]) |
---|
| 108 | z = c*np.array([ 1, 1, 1, 1,-1,-1,-1,-1]) |
---|
| 109 | tri = np.array([ |
---|
| 110 | # counter clockwise triangles |
---|
| 111 | # z: up/down, x: right/left, y: front/back |
---|
| 112 | [0,1,2], [3,2,1], # top face |
---|
| 113 | [6,5,4], [5,6,7], # bottom face |
---|
| 114 | [0,2,6], [6,4,0], # right face |
---|
| 115 | [1,5,7], [7,3,1], # left face |
---|
| 116 | [2,3,6], [7,6,3], # front face |
---|
| 117 | [4,1,0], [5,1,4], # back face |
---|
| 118 | ]) |
---|
| 119 | |
---|
| 120 | points = np.matrix([x,y,z]) |
---|
| 121 | points = Rz(dpsi)*Ry(dtheta)*Rx(dphi)*points |
---|
| 122 | points = Rz(phi)*Ry(theta)*Rz(psi)*points |
---|
| 123 | |
---|
| 124 | x,y,z = [np.array(v).flatten() for v in points] |
---|
| 125 | ax.plot_trisurf(x, y, triangles=tri, Z=z, color='w', alpha=alpha) |
---|
| 126 | |
---|
| 127 | def draw_sphere(ax, radius=10., steps=100): |
---|
| 128 | u = np.linspace(0, 2 * np.pi, steps) |
---|
| 129 | v = np.linspace(0, np.pi, steps) |
---|
| 130 | |
---|
| 131 | x = radius * np.outer(np.cos(u), np.sin(v)) |
---|
| 132 | y = radius * np.outer(np.sin(u), np.sin(v)) |
---|
| 133 | z = radius * np.outer(np.ones(np.size(u)), np.cos(v)) |
---|
| 134 | ax.plot_surface(x, y, z, rstride=4, cstride=4, color='w') |
---|
| 135 | |
---|
| 136 | def draw_mesh_new(ax, theta, dtheta, phi, dphi, flow, radius=10., dist='gauss'): |
---|
| 137 | theta_center = radians(theta) |
---|
| 138 | phi_center = radians(phi) |
---|
| 139 | flow_center = radians(flow) |
---|
| 140 | dtheta = radians(dtheta) |
---|
| 141 | dphi = radians(dphi) |
---|
| 142 | |
---|
| 143 | # 10 point 3-sigma gaussian weights |
---|
| 144 | t = np.linspace(-3., 3., 11) |
---|
| 145 | if dist == 'gauss': |
---|
| 146 | weights = exp(-0.5*t**2) |
---|
| 147 | elif dist == 'rect': |
---|
| 148 | weights = np.ones_like(t) |
---|
| 149 | else: |
---|
| 150 | raise ValueError("expected dist to be 'gauss' or 'rect'") |
---|
| 151 | theta = dtheta*t |
---|
| 152 | phi = dphi*t |
---|
| 153 | |
---|
| 154 | x = radius * np.outer(cos(phi), cos(theta)) |
---|
| 155 | y = radius * np.outer(sin(phi), cos(theta)) |
---|
| 156 | z = radius * np.outer(np.ones_like(phi), sin(theta)) |
---|
| 157 | #w = np.outer(weights, weights*abs(cos(dtheta*t))) |
---|
| 158 | w = np.outer(weights, weights*abs(cos(theta))) |
---|
| 159 | |
---|
| 160 | x, y, z, w = [v.flatten() for v in (x,y,z,w)] |
---|
| 161 | x, y, z = rotate(x, y, z, phi_center, theta_center, flow_center) |
---|
| 162 | |
---|
| 163 | ax.scatter(x, y, z, c=w, marker='o', vmin=0., vmax=1.) |
---|
| 164 | |
---|
| 165 | def rotate(x, y, z, phi, theta, psi): |
---|
| 166 | R = Rz(phi)*Ry(theta)*Rz(psi) |
---|
| 167 | p = np.vstack([x,y,z]) |
---|
| 168 | return R*p |
---|
| 169 | |
---|
| 170 | def Rx(angle): |
---|
| 171 | a = radians(angle) |
---|
| 172 | R = [[1., 0., 0.], |
---|
| 173 | [0., cos(a), sin(a)], |
---|
| 174 | [0., -sin(a), cos(a)]] |
---|
| 175 | return np.matrix(R) |
---|
| 176 | |
---|
| 177 | def Ry(angle): |
---|
| 178 | a = radians(angle) |
---|
| 179 | R = [[cos(a), 0., -sin(a)], |
---|
| 180 | [0., 1., 0.], |
---|
| 181 | [sin(a), 0., cos(a)]] |
---|
| 182 | return np.matrix(R) |
---|
| 183 | |
---|
| 184 | def Rz(angle): |
---|
| 185 | a = radians(angle) |
---|
| 186 | R = [[cos(a), -sin(a), 0.], |
---|
| 187 | [sin(a), cos(a), 0.], |
---|
| 188 | [0., 0., 1.]] |
---|
| 189 | return np.matrix(R) |
---|
| 190 | |
---|
| 191 | def main(): |
---|
| 192 | #plt.hold(True) |
---|
| 193 | plt.set_cmap('gist_earth') |
---|
| 194 | plt.clf() |
---|
| 195 | #gs = gridspec.GridSpec(2,1,height_ratios=[4,1]) |
---|
| 196 | #ax = plt.subplot(gs[0], projection='3d') |
---|
| 197 | ax = plt.axes([0.0, 0.2, 1.0, 0.8], projection='3d') |
---|
| 198 | |
---|
| 199 | theta, dtheta = 70., 10. |
---|
| 200 | phi, dphi = -45., 3. |
---|
| 201 | psi, dpsi = -45., 3. |
---|
| 202 | theta, phi, psi = 0, 0, 0 |
---|
[1b693ba] | 203 | dtheta, dphi, dpsi = 0, 0, 0 |
---|
[782dd1f] | 204 | #dist = 'rect' |
---|
| 205 | dist = 'gauss' |
---|
| 206 | |
---|
| 207 | axcolor = 'lightgoldenrodyellow' |
---|
| 208 | axtheta = plt.axes([0.1, 0.15, 0.45, 0.04], axisbg=axcolor) |
---|
| 209 | axphi = plt.axes([0.1, 0.1, 0.45, 0.04], axisbg=axcolor) |
---|
| 210 | axpsi = plt.axes([0.1, 0.05, 0.45, 0.04], axisbg=axcolor) |
---|
[1b693ba] | 211 | stheta = Slider(axtheta, 'Theta', -90, 90, valinit=theta) |
---|
[782dd1f] | 212 | sphi = Slider(axphi, 'Phi', -180, 180, valinit=phi) |
---|
| 213 | spsi = Slider(axpsi, 'Psi', -180, 180, valinit=psi) |
---|
| 214 | axdtheta = plt.axes([0.75, 0.15, 0.15, 0.04], axisbg=axcolor) |
---|
| 215 | axdphi = plt.axes([0.75, 0.1, 0.15, 0.04], axisbg=axcolor) |
---|
| 216 | axdpsi= plt.axes([0.75, 0.05, 0.15, 0.04], axisbg=axcolor) |
---|
| 217 | sdtheta = Slider(axdtheta, 'dTheta', 0, 30, valinit=dtheta) |
---|
| 218 | sdphi = Slider(axdphi, 'dPhi', 0, 30, valinit=dphi) |
---|
| 219 | sdpsi = Slider(axdpsi, 'dPsi', 0, 30, valinit=dphi) |
---|
| 220 | |
---|
| 221 | def update(val, axis=None): |
---|
| 222 | theta, phi, psi = stheta.val, sphi.val, spsi.val |
---|
| 223 | dtheta, dphi, dpsi = sdtheta.val, sdphi.val, sdpsi.val |
---|
| 224 | ax.cla() |
---|
| 225 | draw_beam(ax) |
---|
| 226 | draw_shimmy(ax, theta, phi, psi, dtheta, dphi, dpsi) |
---|
| 227 | #if not axis.startswith('d'): |
---|
| 228 | # ax.view_init(elev=theta, azim=phi) |
---|
| 229 | plt.gcf().canvas.draw() |
---|
| 230 | |
---|
| 231 | stheta.on_changed(lambda v: update(v,'theta')) |
---|
| 232 | sphi.on_changed(lambda v: update(v, 'phi')) |
---|
| 233 | spsi.on_changed(lambda v: update(v, 'psi')) |
---|
| 234 | sdtheta.on_changed(lambda v: update(v, 'dtheta')) |
---|
| 235 | sdphi.on_changed(lambda v: update(v, 'dphi')) |
---|
| 236 | sdpsi.on_changed(lambda v: update(v, 'dpsi')) |
---|
| 237 | |
---|
| 238 | update(None, 'phi') |
---|
| 239 | |
---|
| 240 | plt.show() |
---|
| 241 | |
---|
| 242 | if __name__ == "__main__": |
---|
| 243 | main() |
---|