1 | from collections import namedtuple |
---|
2 | import numpy as np |
---|
3 | from numpy import sqrt, exp, expm1 |
---|
4 | |
---|
5 | AVOGADRO = 6.022e23 |
---|
6 | |
---|
7 | Polymer = namedtuple("Polymer", "n phi v a b".split()) |
---|
8 | def E(q, poly): |
---|
9 | qrsq = (q*Rg(poly))**2 |
---|
10 | retval = exp(-qrsq) |
---|
11 | return retval |
---|
12 | |
---|
13 | def F(q, poly): |
---|
14 | qrsq = (q*Rg(poly))**2 |
---|
15 | retval = -expm1(-qrsq)/qrsq |
---|
16 | return retval |
---|
17 | |
---|
18 | def P_ii(q, poly): |
---|
19 | qrsq = (q*Rg(poly))**2 |
---|
20 | retval = 2 * (expm1(-qrsq) + qrsq)/qrsq**2 |
---|
21 | return retval |
---|
22 | |
---|
23 | def P_ij(q, poly_list): |
---|
24 | i, j = poly_list[0], poly_list[-1] |
---|
25 | retval = F(q, i) * np.prod([E(q,p) for p in poly_list[1:-1]]) * F(q, j) |
---|
26 | return retval |
---|
27 | |
---|
28 | def Rg(poly): |
---|
29 | return sqrt(poly.n/6.)*poly.a |
---|
30 | |
---|
31 | def S0_ii(q, poly): |
---|
32 | retval = poly.n*poly.phi*poly.v*P_ii(q, poly) |
---|
33 | return retval |
---|
34 | |
---|
35 | def S0_ij(q, poly_list): |
---|
36 | i,j = poly_list[0], poly_list[-1] |
---|
37 | retval = sqrt(i.n*i.phi*i.v*j.n*j.phi*j.v) * P_ij(q, poly_list) |
---|
38 | return retval |
---|
39 | |
---|
40 | def drho(poly, base): |
---|
41 | return (poly.b/poly.v - base.b/base.v)*1e-13*sqrt(AVOGADRO) |
---|
42 | |
---|
43 | def binary_blend(q, C, D, Kcd): |
---|
44 | """ |
---|
45 | de Gennes, 1979 |
---|
46 | """ |
---|
47 | S0cc = S0_ii(q, C) |
---|
48 | S0dd = S0_ii(q, D) |
---|
49 | vcc = 1/S0dd - 2*Kcd #/v0 |
---|
50 | Scc = S0cc/(1 + vcc*S0cc) |
---|
51 | rhocd = drho(C,D) |
---|
52 | Iq = rhocd**2 * Scc |
---|
53 | return Iq |
---|
54 | |
---|
55 | def ternary_blend(q, B, C, D, Kbc, Kbd, Kcd): |
---|
56 | S0bb = S0_ii(q, B) |
---|
57 | S0cc = S0_ii(q, C) |
---|
58 | S0dd = S0_ii(q, D) |
---|
59 | vbb = 1/S0dd - 2*Kbd |
---|
60 | vcc = 1/S0dd - 2*Kcd |
---|
61 | vbc = 1/S0dd + Kbd - Kbc - Kcd |
---|
62 | rhobd = drho(B,D) |
---|
63 | rhocd = drho(C,D) |
---|
64 | det = (1+vbb*S0bb)*(1+vcc*S0cc) - vbc**2*S0bb*S0cc |
---|
65 | Sbb = S0bb*(1+vcc*S0cc)/det |
---|
66 | Scc = S0cc*(1+vbb*S0bb)/det |
---|
67 | Sbc = -S0bb*vbc*S0cc/det |
---|
68 | Iq = rhobd**2*Sbb + rhocd**2*Scc + 2*rhobd*rhocd*Sbc |
---|
69 | return Iq |
---|
70 | |
---|
71 | def diblock_copolymer(q, C, D, Kcd): |
---|
72 | """ |
---|
73 | Leibler, 1980 |
---|
74 | """ |
---|
75 | S0cc = S0_ii(q, C) |
---|
76 | S0dd = S0_ii(q, D) |
---|
77 | S0cd = S0_ij(q, [C, D]) |
---|
78 | Scc = (S0cc*S0dd - S0cd**2)/((S0cc+S0dd + 2*S0cd)-2*Kcd*(S0cc+S0dd-2*S0cd)) |
---|
79 | rhocd = drho(C,D) |
---|
80 | Iq = rhocd**2 * Scc |
---|
81 | return Iq |
---|
82 | |
---|
83 | def matrix_form(q, case_num, polys, |
---|
84 | Kab=0., Kac=0., Kad=0., Kbc=0., Kbd=0., Kcd=0.): |
---|
85 | if case_num < 2: |
---|
86 | C, D = polys |
---|
87 | A = B = D |
---|
88 | elif case_num < 5: |
---|
89 | B, C, D = polys |
---|
90 | A = D |
---|
91 | else: |
---|
92 | A, B, C, D = polys |
---|
93 | |
---|
94 | rho = np.matrix([[drho(p, D)] for p in (A,B,C)]) |
---|
95 | S0aa = S0_ii(q, A) |
---|
96 | S0bb = S0_ii(q, B) |
---|
97 | S0cc = S0_ii(q, C) |
---|
98 | S0ab = S0_ij(q, [A, B]) |
---|
99 | S0ac = S0_ij(q, [A, B, C]) |
---|
100 | S0bc = S0_ij(q, [B, C]) |
---|
101 | if case_num == 4: # No a-c interaction in triblock copolymer |
---|
102 | S0ac *= 0.0 |
---|
103 | elif case_num == 9: # No a-c or a-d interaction in tetrablock copolymer |
---|
104 | S0ac *= 0.0 |
---|
105 | |
---|
106 | S0 = np.array([[S0aa, S0ab, S0ac], [S0ab, S0bb, S0bc], [S0ac, S0bc, S0cc]]) |
---|
107 | S0dd = S0_ii(q, D) |
---|
108 | vaa = 1./S0dd - 2*Kad |
---|
109 | vbb = 1./S0dd - 2*Kbd |
---|
110 | vcc = 1./S0dd - 2*Kcd |
---|
111 | vab = 1./S0dd + Kab - Kad - Kbd |
---|
112 | vac = 1./S0dd + Kac - Kad - Kcd |
---|
113 | vbc = 1./S0dd + Kbc - Kbd - Kcd |
---|
114 | v = np.array([[vaa, vab, vac], [vab, vbb, vbc], [vac, vbc, vcc]]) |
---|
115 | |
---|
116 | Iq = np.empty_like(q) |
---|
117 | for k, qk in enumerate(q): |
---|
118 | S0_k = S0[:,:,k].M |
---|
119 | v_k = v[:,:,k].M |
---|
120 | S_k = np.linalg.inv(1 + S0_k*v_k)*S0_k |
---|
121 | Iq[k] = rho.T * S_k * rho |
---|
122 | |
---|
123 | def build_pars(case_num, polys, **interactions): |
---|
124 | def set_poly(x, poly): |
---|
125 | pars["N"+x] = poly.n |
---|
126 | pars["Phi"+x] = poly.phi |
---|
127 | pars["v"+x] = poly.v |
---|
128 | pars["b"+x] = poly.a |
---|
129 | pars["L"+x] = poly.b |
---|
130 | pars = interactions.copy() |
---|
131 | pars["case_num"] = case_num |
---|
132 | polys = list(reversed(polys)) |
---|
133 | if len(polys) >= 4: set_poly("a",polys[3]) |
---|
134 | if len(polys) >= 3: set_poly("b",polys[2]) |
---|
135 | if len(polys) >= 2: set_poly("c",polys[1]) |
---|
136 | if len(polys) >= 1: set_poly("d",polys[0]) |
---|
137 | return pars |
---|
138 | |
---|
139 | def sasmodels_rpa(q, pars): |
---|
140 | from sasmodels.models import rpa |
---|
141 | from sasmodels.core import load_model |
---|
142 | from sasmodels.direct_model import DirectModel |
---|
143 | from sasmodels.data import empty_data1D |
---|
144 | data = empty_data1D(q, resolution=0.0) |
---|
145 | model = load_model(rpa, dtype="double", platform="dll") |
---|
146 | #model = load_model(rpa, dtype="single", platform="ocl") |
---|
147 | M = DirectModel(data, model) |
---|
148 | return M(**pars) |
---|
149 | |
---|
150 | def sasview_rpa(q, pars): |
---|
151 | from sasmodels.models import rpa |
---|
152 | from sasmodels.compare import eval_sasview |
---|
153 | from sasmodels.data import empty_data1D |
---|
154 | data = empty_data1D(q, resolution=0.0) |
---|
155 | M = eval_sasview(rpa, data) |
---|
156 | return M(**pars) |
---|
157 | |
---|
158 | def demo(): |
---|
159 | import sys |
---|
160 | case_num = 0 if len(sys.argv) < 2 else int(sys.argv[1]) |
---|
161 | |
---|
162 | B = Polymer(n=525,phi=0.57,v=97.5,b=-4.99,a=8) |
---|
163 | C = Polymer(n=525,phi=0.57,v=97.5,b=-4.99,a=8) |
---|
164 | D = Polymer(n=1105,phi=0.43,v=81.9,b=53.1,a=2) |
---|
165 | q = np.logspace(-4,-1,400) |
---|
166 | #q = np.array([0.1]) |
---|
167 | Kab=Kac=Kad=0.0 |
---|
168 | Kcd = 0.0106*0.0035 - 1.84e-5 |
---|
169 | Kbd = Kcd + 2e-4 |
---|
170 | Kbc = (Kcd + 1e-4)*0.5 |
---|
171 | K = dict(Kab=Kab,Kac=Kac,Kad=Kad,Kbc=Kbc,Kbd=Kbd,Kcd=Kcd) |
---|
172 | if case_num == 0: |
---|
173 | Iq = binary_blend(q, C, D, Kcd) |
---|
174 | elif case_num == 1: |
---|
175 | Iq = diblock_copolymer(q, C, D, Kcd) |
---|
176 | elif case_num == 2: |
---|
177 | Iq = ternary_blend(q, B, C, D, Kbc, Kbd, Kcd) |
---|
178 | else: |
---|
179 | raise ValueError("Case %d not implmented"%case_num) |
---|
180 | |
---|
181 | pars = build_pars(case_num, [B, C, D], **K) |
---|
182 | print "eval sasmodels" |
---|
183 | Iq_sasmodels = sasmodels_rpa(q, pars) |
---|
184 | print "eval sasview" |
---|
185 | Iq_sasview = sasview_rpa(q, pars) |
---|
186 | print 1./Iq[0], 1./Iq_sasmodels[0], 1./Iq_sasview[0] |
---|
187 | |
---|
188 | #return |
---|
189 | import pylab |
---|
190 | pylab.subplot(121) |
---|
191 | pylab.loglog(q, Iq, label='direct') |
---|
192 | pylab.loglog(q, Iq_sasmodels, label='sasmodels') |
---|
193 | pylab.loglog(q, Iq_sasview, label='sasview') |
---|
194 | pylab.legend() |
---|
195 | pylab.subplot(122) |
---|
196 | pylab.loglog(q, abs(Iq_sasview - Iq_sasmodels)/Iq_sasmodels, label='sasview-sasmodels') |
---|
197 | pylab.loglog(q, abs(Iq_sasmodels - Iq)/Iq, label='sasmodels-direct') |
---|
198 | pylab.legend() |
---|
199 | pylab.show() |
---|
200 | |
---|
201 | if __name__ == "__main__": |
---|
202 | demo() |
---|