[cfa28d3] | 1 | from __future__ import division, print_function |
---|
| 2 | |
---|
| 3 | import time |
---|
| 4 | from copy import copy |
---|
[7d0afa3] | 5 | import os |
---|
| 6 | import argparse |
---|
| 7 | from collections import OrderedDict |
---|
[cfa28d3] | 8 | |
---|
| 9 | import numpy as np |
---|
| 10 | from numpy import pi, radians, sin, cos, sqrt |
---|
[032646d] | 11 | from numpy.random import poisson, uniform, randn, rand |
---|
[a1c32c2] | 12 | from numpy.polynomial.legendre import leggauss |
---|
[cfa28d3] | 13 | from scipy.integrate import simps |
---|
| 14 | from scipy.special import j1 as J1 |
---|
| 15 | |
---|
[7d0afa3] | 16 | try: |
---|
| 17 | import numba |
---|
| 18 | USE_NUMBA = True |
---|
| 19 | except ImportError: |
---|
| 20 | USE_NUMBA = False |
---|
| 21 | |
---|
[cfa28d3] | 22 | # Definition of rotation matrices comes from wikipedia: |
---|
| 23 | # https://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations |
---|
| 24 | def Rx(angle): |
---|
| 25 | """Construct a matrix to rotate points about *x* by *angle* degrees.""" |
---|
| 26 | a = radians(angle) |
---|
| 27 | R = [[1, 0, 0], |
---|
| 28 | [0, +cos(a), -sin(a)], |
---|
| 29 | [0, +sin(a), +cos(a)]] |
---|
| 30 | return np.matrix(R) |
---|
| 31 | |
---|
| 32 | def Ry(angle): |
---|
| 33 | """Construct a matrix to rotate points about *y* by *angle* degrees.""" |
---|
| 34 | a = radians(angle) |
---|
| 35 | R = [[+cos(a), 0, +sin(a)], |
---|
| 36 | [0, 1, 0], |
---|
| 37 | [-sin(a), 0, +cos(a)]] |
---|
| 38 | return np.matrix(R) |
---|
| 39 | |
---|
| 40 | def Rz(angle): |
---|
| 41 | """Construct a matrix to rotate points about *z* by *angle* degrees.""" |
---|
| 42 | a = radians(angle) |
---|
| 43 | R = [[+cos(a), -sin(a), 0], |
---|
| 44 | [+sin(a), +cos(a), 0], |
---|
| 45 | [0, 0, 1]] |
---|
| 46 | return np.matrix(R) |
---|
| 47 | |
---|
| 48 | def rotation(theta, phi, psi): |
---|
| 49 | """ |
---|
| 50 | Apply the jitter transform to a set of points. |
---|
| 51 | |
---|
| 52 | Points are stored in a 3 x n numpy matrix, not a numpy array or tuple. |
---|
| 53 | """ |
---|
| 54 | return Rx(phi)*Ry(theta)*Rz(psi) |
---|
| 55 | |
---|
[226473d] | 56 | def apply_view(points, view): |
---|
| 57 | """ |
---|
| 58 | Apply the view transform (theta, phi, psi) to a set of points. |
---|
| 59 | |
---|
| 60 | Points are stored in a 3 x n numpy array. |
---|
| 61 | |
---|
| 62 | View angles are in degrees. |
---|
| 63 | """ |
---|
| 64 | theta, phi, psi = view |
---|
| 65 | return np.asarray((Rz(phi)*Ry(theta)*Rz(psi))*np.matrix(points.T)).T |
---|
| 66 | |
---|
| 67 | |
---|
| 68 | def invert_view(qx, qy, view): |
---|
| 69 | """ |
---|
| 70 | Return (qa, qb, qc) for the (theta, phi, psi) view angle at detector |
---|
| 71 | pixel (qx, qy). |
---|
| 72 | |
---|
| 73 | View angles are in degrees. |
---|
| 74 | """ |
---|
| 75 | theta, phi, psi = view |
---|
| 76 | q = np.vstack((qx.flatten(), qy.flatten(), 0*qx.flatten())) |
---|
| 77 | return np.asarray((Rz(-psi)*Ry(-theta)*Rz(-phi))*np.matrix(q)) |
---|
| 78 | |
---|
| 79 | |
---|
[cfa28d3] | 80 | class Shape: |
---|
| 81 | rotation = np.matrix([[1., 0, 0], [0, 1, 0], [0, 0, 1]]) |
---|
| 82 | center = np.array([0., 0., 0.])[:, None] |
---|
| 83 | r_max = None |
---|
| 84 | |
---|
| 85 | def volume(self): |
---|
| 86 | # type: () -> float |
---|
| 87 | raise NotImplementedError() |
---|
| 88 | |
---|
| 89 | def sample(self, density): |
---|
| 90 | # type: (float) -> np.ndarray[N], np.ndarray[N, 3] |
---|
| 91 | raise NotImplementedError() |
---|
| 92 | |
---|
[032646d] | 93 | def dims(self): |
---|
| 94 | # type: () -> float, float, float |
---|
| 95 | raise NotImplementedError() |
---|
| 96 | |
---|
[cfa28d3] | 97 | def rotate(self, theta, phi, psi): |
---|
| 98 | self.rotation = rotation(theta, phi, psi) * self.rotation |
---|
| 99 | return self |
---|
| 100 | |
---|
| 101 | def shift(self, x, y, z): |
---|
| 102 | self.center = self.center + np.array([x, y, z])[:, None] |
---|
| 103 | return self |
---|
| 104 | |
---|
| 105 | def _adjust(self, points): |
---|
| 106 | points = np.asarray(self.rotation * np.matrix(points.T)) + self.center |
---|
| 107 | return points.T |
---|
| 108 | |
---|
| 109 | def r_bins(self, q, over_sampling=1, r_step=0.): |
---|
| 110 | r_max = min(2 * pi / q[0], self.r_max) |
---|
| 111 | if r_step == 0.: |
---|
| 112 | r_step = 2 * pi / q[-1] / over_sampling |
---|
| 113 | #r_step = 0.01 |
---|
| 114 | return np.arange(r_step, r_max, r_step) |
---|
| 115 | |
---|
| 116 | class Composite(Shape): |
---|
| 117 | def __init__(self, shapes, center=(0, 0, 0), orientation=(0, 0, 0)): |
---|
| 118 | self.shapes = shapes |
---|
| 119 | self.rotate(*orientation) |
---|
| 120 | self.shift(*center) |
---|
| 121 | |
---|
| 122 | # Find the worst case distance between any two points amongst a set |
---|
| 123 | # of shapes independent of orientation. This could easily be a |
---|
| 124 | # factor of two worse than necessary, e.g., a pair of thin rods |
---|
| 125 | # end-to-end vs the same pair side-by-side. |
---|
| 126 | distances = [((s1.r_max + s2.r_max)/2 |
---|
| 127 | + sqrt(np.sum((s1.center - s2.center)**2))) |
---|
| 128 | for s1 in shapes |
---|
| 129 | for s2 in shapes] |
---|
| 130 | self.r_max = max(distances + [s.r_max for s in shapes]) |
---|
[032646d] | 131 | self.volume = sum(shape.volume for shape in self.shapes) |
---|
[cfa28d3] | 132 | |
---|
| 133 | def sample(self, density): |
---|
| 134 | values, points = zip(*(shape.sample(density) for shape in self.shapes)) |
---|
| 135 | return np.hstack(values), self._adjust(np.vstack(points)) |
---|
| 136 | |
---|
| 137 | class Box(Shape): |
---|
| 138 | def __init__(self, a, b, c, |
---|
| 139 | value, center=(0, 0, 0), orientation=(0, 0, 0)): |
---|
| 140 | self.value = np.asarray(value) |
---|
| 141 | self.rotate(*orientation) |
---|
| 142 | self.shift(*center) |
---|
| 143 | self.a, self.b, self.c = a, b, c |
---|
| 144 | self._scale = np.array([a/2, b/2, c/2])[None, :] |
---|
| 145 | self.r_max = sqrt(a**2 + b**2 + c**2) |
---|
[032646d] | 146 | self.dims = a, b, c |
---|
| 147 | self.volume = a*b*c |
---|
[cfa28d3] | 148 | |
---|
| 149 | def sample(self, density): |
---|
[032646d] | 150 | num_points = poisson(density*self.volume) |
---|
[cfa28d3] | 151 | points = self._scale*uniform(-1, 1, size=(num_points, 3)) |
---|
| 152 | values = self.value.repeat(points.shape[0]) |
---|
| 153 | return values, self._adjust(points) |
---|
| 154 | |
---|
| 155 | class EllipticalCylinder(Shape): |
---|
| 156 | def __init__(self, ra, rb, length, |
---|
| 157 | value, center=(0, 0, 0), orientation=(0, 0, 0)): |
---|
| 158 | self.value = np.asarray(value) |
---|
| 159 | self.rotate(*orientation) |
---|
| 160 | self.shift(*center) |
---|
| 161 | self.ra, self.rb, self.length = ra, rb, length |
---|
| 162 | self._scale = np.array([ra, rb, length/2])[None, :] |
---|
| 163 | self.r_max = sqrt(4*max(ra, rb)**2 + length**2) |
---|
[032646d] | 164 | self.dims = 2*ra, 2*rb, length |
---|
| 165 | self.volume = pi*ra*rb*length |
---|
[cfa28d3] | 166 | |
---|
| 167 | def sample(self, density): |
---|
[032646d] | 168 | # randomly sample from a box of side length 2*r, excluding anything |
---|
| 169 | # not in the cylinder |
---|
[cfa28d3] | 170 | num_points = poisson(density*4*self.ra*self.rb*self.length) |
---|
| 171 | points = uniform(-1, 1, size=(num_points, 3)) |
---|
| 172 | radius = points[:, 0]**2 + points[:, 1]**2 |
---|
[893bea2] | 173 | points = points[radius <= 1] |
---|
[cfa28d3] | 174 | values = self.value.repeat(points.shape[0]) |
---|
[893bea2] | 175 | return values, self._adjust(self._scale*points) |
---|
| 176 | |
---|
| 177 | class EllipticalBicelle(Shape): |
---|
| 178 | def __init__(self, ra, rb, length, |
---|
| 179 | thick_rim, thick_face, |
---|
| 180 | value_core, value_rim, value_face, |
---|
| 181 | center=(0, 0, 0), orientation=(0, 0, 0)): |
---|
| 182 | self.rotate(*orientation) |
---|
| 183 | self.shift(*center) |
---|
| 184 | self.value = value_core |
---|
| 185 | self.ra, self.rb, self.length = ra, rb, length |
---|
| 186 | self.thick_rim, self.thick_face = thick_rim, thick_face |
---|
| 187 | self.value_rim, self.value_face = value_rim, value_face |
---|
| 188 | |
---|
| 189 | # reset cylinder to outer dimensions for calculating scale, etc. |
---|
| 190 | ra = self.ra + self.thick_rim |
---|
| 191 | rb = self.rb + self.thick_rim |
---|
| 192 | length = self.length + 2*self.thick_face |
---|
| 193 | self._scale = np.array([ra, rb, length/2])[None, :] |
---|
| 194 | self.r_max = sqrt(4*max(ra, rb)**2 + length**2) |
---|
| 195 | self.dims = 2*ra, 2*rb, length |
---|
| 196 | self.volume = pi*ra*rb*length |
---|
| 197 | |
---|
| 198 | def sample(self, density): |
---|
| 199 | # randomly sample from a box of side length 2*r, excluding anything |
---|
| 200 | # not in the cylinder |
---|
| 201 | ra = self.ra + self.thick_rim |
---|
| 202 | rb = self.rb + self.thick_rim |
---|
| 203 | length = self.length + 2*self.thick_face |
---|
| 204 | num_points = poisson(density*4*ra*rb*length) |
---|
| 205 | points = uniform(-1, 1, size=(num_points, 3)) |
---|
| 206 | radius = points[:, 0]**2 + points[:, 1]**2 |
---|
| 207 | points = points[radius <= 1] |
---|
| 208 | # set all to core value first |
---|
| 209 | values = np.ones_like(points[:, 0])*self.value |
---|
| 210 | # then set value to face value if |z| > face/(length/2)) |
---|
| 211 | values[abs(points[:, 2]) > self.length/(self.length + 2*self.thick_face)] = self.value_face |
---|
| 212 | # finally set value to rim value if outside the core ellipse |
---|
[362a66f] | 213 | radius = (points[:, 0]**2*(1 + self.thick_rim/self.ra)**2 |
---|
| 214 | + points[:, 1]**2*(1 + self.thick_rim/self.rb)**2) |
---|
[893bea2] | 215 | values[radius>1] = self.value_rim |
---|
| 216 | return values, self._adjust(self._scale*points) |
---|
[cfa28d3] | 217 | |
---|
| 218 | class TriaxialEllipsoid(Shape): |
---|
| 219 | def __init__(self, ra, rb, rc, |
---|
| 220 | value, center=(0, 0, 0), orientation=(0, 0, 0)): |
---|
| 221 | self.value = np.asarray(value) |
---|
| 222 | self.rotate(*orientation) |
---|
| 223 | self.shift(*center) |
---|
| 224 | self.ra, self.rb, self.rc = ra, rb, rc |
---|
| 225 | self._scale = np.array([ra, rb, rc])[None, :] |
---|
| 226 | self.r_max = 2*max(ra, rb, rc) |
---|
[032646d] | 227 | self.dims = 2*ra, 2*rb, 2*rc |
---|
| 228 | self.volume = 4*pi/3 * ra * rb * rc |
---|
[cfa28d3] | 229 | |
---|
| 230 | def sample(self, density): |
---|
| 231 | # randomly sample from a box of side length 2*r, excluding anything |
---|
| 232 | # not in the ellipsoid |
---|
| 233 | num_points = poisson(density*8*self.ra*self.rb*self.rc) |
---|
| 234 | points = uniform(-1, 1, size=(num_points, 3)) |
---|
| 235 | radius = np.sum(points**2, axis=1) |
---|
| 236 | points = self._scale*points[radius <= 1] |
---|
| 237 | values = self.value.repeat(points.shape[0]) |
---|
| 238 | return values, self._adjust(points) |
---|
| 239 | |
---|
| 240 | class Helix(Shape): |
---|
| 241 | def __init__(self, helix_radius, helix_pitch, tube_radius, tube_length, |
---|
| 242 | value, center=(0, 0, 0), orientation=(0, 0, 0)): |
---|
| 243 | self.value = np.asarray(value) |
---|
| 244 | self.rotate(*orientation) |
---|
| 245 | self.shift(*center) |
---|
[032646d] | 246 | helix_length = helix_pitch * tube_length/sqrt(helix_radius**2 + helix_pitch**2) |
---|
| 247 | total_radius = self.helix_radius + self.tube_radius |
---|
[cfa28d3] | 248 | self.helix_radius, self.helix_pitch = helix_radius, helix_pitch |
---|
| 249 | self.tube_radius, self.tube_length = tube_radius, tube_length |
---|
[032646d] | 250 | self.r_max = sqrt(4*total_radius + (helix_length + 2*tube_radius)**2) |
---|
| 251 | self.dims = 2*total_radius, 2*total_radius, helix_length |
---|
[cfa28d3] | 252 | # small tube radius approximation; for larger tubes need to account |
---|
| 253 | # for the fact that the inner length is much shorter than the outer |
---|
| 254 | # length |
---|
[032646d] | 255 | self.volume = pi*self.tube_radius**2*self.tube_length |
---|
[cfa28d3] | 256 | |
---|
| 257 | def points(self, density): |
---|
| 258 | num_points = poisson(density*4*self.tube_radius**2*self.tube_length) |
---|
| 259 | points = uniform(-1, 1, size=(num_points, 3)) |
---|
| 260 | radius = points[:, 0]**2 + points[:, 1]**2 |
---|
| 261 | points = points[radius <= 1] |
---|
| 262 | |
---|
| 263 | # Based on math stackexchange answer by Jyrki Lahtonen |
---|
| 264 | # https://math.stackexchange.com/a/461637 |
---|
| 265 | # with helix along z rather than x [so tuples in answer are (z, x, y)] |
---|
| 266 | # and with random points in the cross section (p1, p2) rather than |
---|
| 267 | # uniform points on the surface (cos u, sin u). |
---|
| 268 | a, R = self.tube_radius, self.helix_radius |
---|
| 269 | h = self.helix_pitch |
---|
| 270 | scale = 1/sqrt(R**2 + h**2) |
---|
| 271 | t = points[:, 3] * (self.tube_length * scale/2) |
---|
| 272 | cos_t, sin_t = cos(t), sin(t) |
---|
| 273 | |
---|
| 274 | # rx = R*cos_t |
---|
| 275 | # ry = R*sin_t |
---|
| 276 | # rz = h*t |
---|
| 277 | # nx = -a * cos_t * points[:, 1] |
---|
| 278 | # ny = -a * sin_t * points[:, 1] |
---|
| 279 | # nz = 0 |
---|
| 280 | # bx = (a * h/scale) * sin_t * points[:, 2] |
---|
| 281 | # by = (-a * h/scale) * cos_t * points[:, 2] |
---|
| 282 | # bz = a*R/scale |
---|
| 283 | # x = rx + nx + bx |
---|
| 284 | # y = ry + ny + by |
---|
| 285 | # z = rz + nz + bz |
---|
| 286 | u, v = (R - a*points[:, 1]), (a * h/scale)*points[:, 2] |
---|
| 287 | x = u * cos_t + v * sin_t |
---|
| 288 | y = u * sin_t - v * cos_t |
---|
| 289 | z = a*R/scale + h * t |
---|
| 290 | |
---|
| 291 | points = np.hstack((x, y, z)) |
---|
| 292 | values = self.value.repeat(points.shape[0]) |
---|
| 293 | return values, self._adjust(points) |
---|
| 294 | |
---|
[7d0afa3] | 295 | def csbox(a=10, b=20, c=30, da=1, db=2, dc=3, slda=1, sldb=2, sldc=3, sld_core=4): |
---|
| 296 | core = Box(a, b, c, sld_core) |
---|
| 297 | side_a = Box(da, b, c, slda, center=((a+da)/2, 0, 0)) |
---|
| 298 | side_b = Box(a, db, c, sldb, center=(0, (b+db)/2, 0)) |
---|
| 299 | side_c = Box(a, b, dc, sldc, center=(0, 0, (c+dc)/2)) |
---|
| 300 | side_a2 = copy(side_a).shift(-a-da, 0, 0) |
---|
| 301 | side_b2 = copy(side_b).shift(0, -b-db, 0) |
---|
| 302 | side_c2 = copy(side_c).shift(0, 0, -c-dc) |
---|
| 303 | shape = Composite((core, side_a, side_b, side_c, side_a2, side_b2, side_c2)) |
---|
[032646d] | 304 | shape.dims = 2*da+a, 2*db+b, 2*dc+c |
---|
[7d0afa3] | 305 | return shape |
---|
| 306 | |
---|
| 307 | def _Iqxy(values, x, y, z, qa, qb, qc): |
---|
| 308 | """I(q) = |sum V(r) rho(r) e^(1j q.r)|^2 / sum V(r)""" |
---|
| 309 | Iq = [abs(np.sum(values*np.exp(1j*(qa_k*x + qb_k*y + qc_k*z))))**2 |
---|
| 310 | for qa_k, qb_k, qc_k in zip(qa.flat, qb.flat, qc.flat)] |
---|
| 311 | return Iq |
---|
| 312 | |
---|
| 313 | if USE_NUMBA: |
---|
| 314 | # Override simple numpy solution with numba if available |
---|
[8fb2a94] | 315 | from numba import njit |
---|
| 316 | @njit("f8[:](f8[:],f8[:],f8[:],f8[:],f8[:],f8[:],f8[:])") |
---|
[8bd379a] | 317 | def _Iqxy(values, x, y, z, qa, qb, qc): |
---|
[8fb2a94] | 318 | Iq = np.zeros_like(qa) |
---|
| 319 | for j in range(len(Iq)): |
---|
| 320 | total = 0. + 0j |
---|
[8bd379a] | 321 | for k in range(len(values)): |
---|
[8fb2a94] | 322 | total += values[k]*np.exp(1j*(qa[j]*x[k] + qb[j]*y[k] + qc[j]*z[k])) |
---|
| 323 | Iq[j] = abs(total)**2 |
---|
| 324 | return Iq |
---|
| 325 | |
---|
| 326 | def calc_Iqxy(qx, qy, rho, points, volume=1.0, view=(0, 0, 0)): |
---|
[226473d] | 327 | qx, qy = np.broadcast_arrays(qx, qy) |
---|
| 328 | qa, qb, qc = invert_view(qx, qy, view) |
---|
| 329 | rho, volume = np.broadcast_arrays(rho, volume) |
---|
| 330 | values = rho*volume |
---|
[8fb2a94] | 331 | x, y, z = points.T |
---|
[8bd379a] | 332 | values, x, y, z, qa, qb, qc = [np.asarray(v, 'd') |
---|
| 333 | for v in (values, x, y, z, qa, qb, qc)] |
---|
[226473d] | 334 | |
---|
| 335 | # I(q) = |sum V(r) rho(r) e^(1j q.r)|^2 / sum V(r) |
---|
[7d0afa3] | 336 | Iq = _Iqxy(values, x, y, z, qa.flatten(), qb.flatten(), qc.flatten()) |
---|
[8fb2a94] | 337 | return np.asarray(Iq).reshape(qx.shape) / np.sum(volume) |
---|
[226473d] | 338 | |
---|
[cfa28d3] | 339 | def _calc_Pr_nonuniform(r, rho, points): |
---|
| 340 | # Make Pr a little be bigger than necessary so that only distances |
---|
| 341 | # min < d < max end up in Pr |
---|
| 342 | n_max = len(r)+1 |
---|
| 343 | extended_Pr = np.zeros(n_max+1, 'd') |
---|
| 344 | # r refers to bin centers; find corresponding bin edges |
---|
| 345 | bins = bin_edges(r) |
---|
| 346 | t_next = time.clock() + 3 |
---|
| 347 | for k, rho_k in enumerate(rho[:-1]): |
---|
| 348 | distance = sqrt(np.sum((points[k] - points[k+1:])**2, axis=1)) |
---|
| 349 | weights = rho_k * rho[k+1:] |
---|
| 350 | index = np.searchsorted(bins, distance) |
---|
| 351 | # Note: indices may be duplicated, so "Pr[index] += w" will not work!! |
---|
| 352 | extended_Pr += np.bincount(index, weights, n_max+1) |
---|
| 353 | t = time.clock() |
---|
| 354 | if t > t_next: |
---|
| 355 | t_next = t + 3 |
---|
| 356 | print("processing %d of %d"%(k, len(rho)-1)) |
---|
| 357 | Pr = extended_Pr[1:-1] |
---|
[8fb2a94] | 358 | return Pr |
---|
[cfa28d3] | 359 | |
---|
[8fb2a94] | 360 | def _calc_Pr_uniform(r, rho, points): |
---|
[cfa28d3] | 361 | # Make Pr a little be bigger than necessary so that only distances |
---|
| 362 | # min < d < max end up in Pr |
---|
[8fb2a94] | 363 | dr, n_max = r[0], len(r) |
---|
[cfa28d3] | 364 | extended_Pr = np.zeros(n_max+1, 'd') |
---|
| 365 | t0 = time.clock() |
---|
| 366 | t_next = t0 + 3 |
---|
| 367 | for k, rho_k in enumerate(rho[:-1]): |
---|
| 368 | distances = sqrt(np.sum((points[k] - points[k+1:])**2, axis=1)) |
---|
| 369 | weights = rho_k * rho[k+1:] |
---|
[8fb2a94] | 370 | index = np.minimum(np.asarray(distances/dr, 'i'), n_max) |
---|
[cfa28d3] | 371 | # Note: indices may be duplicated, so "Pr[index] += w" will not work!! |
---|
| 372 | extended_Pr += np.bincount(index, weights, n_max+1) |
---|
| 373 | t = time.clock() |
---|
| 374 | if t > t_next: |
---|
| 375 | t_next = t + 3 |
---|
| 376 | print("processing %d of %d"%(k, len(rho)-1)) |
---|
| 377 | #print("time py:", time.clock() - t0) |
---|
| 378 | Pr = extended_Pr[:-1] |
---|
| 379 | # Make Pr independent of sampling density. The factor of 2 comes because |
---|
| 380 | # we are only accumulating the upper triangular distances. |
---|
| 381 | #Pr = Pr * 2 / len(rho)**2 |
---|
[8fb2a94] | 382 | return Pr |
---|
[cfa28d3] | 383 | |
---|
| 384 | # Can get an additional 2x by going to C. Cuda/OpenCL will allow even |
---|
| 385 | # more speedup, though still bounded by the n^2 cose. |
---|
| 386 | """ |
---|
| 387 | void pdfcalc(int n, const double *pts, const double *rho, |
---|
| 388 | int nPr, double *Pr, double rstep) |
---|
| 389 | { |
---|
| 390 | int i,j; |
---|
| 391 | |
---|
| 392 | for (i=0; i<n-2; i++) { |
---|
| 393 | for (j=i+1; j<=n-1; j++) { |
---|
| 394 | const double dxx=pts[3*i]-pts[3*j]; |
---|
| 395 | const double dyy=pts[3*i+1]-pts[3*j+1]; |
---|
| 396 | const double dzz=pts[3*i+2]-pts[3*j+2]; |
---|
| 397 | const double d=sqrt(dxx*dxx+dyy*dyy+dzz*dzz); |
---|
| 398 | const int k=rint(d/rstep); |
---|
| 399 | if (k < nPr) Pr[k]+=rho[i]*rho[j]; |
---|
| 400 | } |
---|
| 401 | } |
---|
| 402 | } |
---|
| 403 | """ |
---|
| 404 | |
---|
[7d0afa3] | 405 | if USE_NUMBA: |
---|
| 406 | # Override simple numpy solution with numba if available |
---|
[8fb2a94] | 407 | @njit("f8[:](f8[:], f8[:], f8[:,:])") |
---|
[7d0afa3] | 408 | def _calc_Pr_uniform(r, rho, points): |
---|
[8fb2a94] | 409 | dr = r[0] |
---|
| 410 | n_max = len(r) |
---|
| 411 | Pr = np.zeros_like(r) |
---|
| 412 | for j in range(len(rho) - 1): |
---|
| 413 | x, y, z = points[j, 0], points[j, 1], points[j, 2] |
---|
| 414 | for k in range(j+1, len(rho)): |
---|
| 415 | distance = sqrt((x - points[k, 0])**2 |
---|
| 416 | + (y - points[k, 1])**2 |
---|
| 417 | + (z - points[k, 2])**2) |
---|
| 418 | index = int(distance/dr) |
---|
| 419 | if index < n_max: |
---|
| 420 | Pr[index] += rho[j] * rho[k] |
---|
| 421 | # Make Pr independent of sampling density. The factor of 2 comes because |
---|
| 422 | # we are only accumulating the upper triangular distances. |
---|
| 423 | #Pr = Pr * 2 / len(rho)**2 |
---|
| 424 | return Pr |
---|
| 425 | |
---|
| 426 | |
---|
| 427 | def calc_Pr(r, rho, points): |
---|
| 428 | # P(r) with uniform steps in r is 3x faster; check if we are uniform |
---|
| 429 | # before continuing |
---|
[8bd379a] | 430 | r, rho, points = [np.asarray(v, 'd') for v in (r, rho, points)] |
---|
[8fb2a94] | 431 | if np.max(np.abs(np.diff(r) - r[0])) > r[0]*0.01: |
---|
| 432 | Pr = _calc_Pr_nonuniform(r, rho, points) |
---|
| 433 | else: |
---|
[7d0afa3] | 434 | Pr = _calc_Pr_uniform(r, rho, points) |
---|
[8fb2a94] | 435 | return Pr / Pr.max() |
---|
| 436 | |
---|
| 437 | |
---|
[cfa28d3] | 438 | def j0(x): |
---|
| 439 | return np.sinc(x/np.pi) |
---|
| 440 | |
---|
| 441 | def calc_Iq(q, r, Pr): |
---|
| 442 | Iq = np.array([simps(Pr * j0(qk*r), r) for qk in q]) |
---|
| 443 | #Iq = np.array([np.trapz(Pr * j0(qk*r), r) for qk in q]) |
---|
| 444 | Iq /= Iq[0] |
---|
| 445 | return Iq |
---|
| 446 | |
---|
| 447 | # NOTE: copied from sasmodels/resolution.py |
---|
| 448 | def bin_edges(x): |
---|
| 449 | """ |
---|
| 450 | Determine bin edges from bin centers, assuming that edges are centered |
---|
| 451 | between the bins. |
---|
| 452 | |
---|
| 453 | Note: this uses the arithmetic mean, which may not be appropriate for |
---|
| 454 | log-scaled data. |
---|
| 455 | """ |
---|
| 456 | if len(x) < 2 or (np.diff(x) < 0).any(): |
---|
| 457 | raise ValueError("Expected bins to be an increasing set") |
---|
| 458 | edges = np.hstack([ |
---|
| 459 | x[0] - 0.5*(x[1] - x[0]), # first point minus half first interval |
---|
| 460 | 0.5*(x[1:] + x[:-1]), # mid points of all central intervals |
---|
| 461 | x[-1] + 0.5*(x[-1] - x[-2]), # last point plus half last interval |
---|
| 462 | ]) |
---|
| 463 | return edges |
---|
| 464 | |
---|
[7d0afa3] | 465 | # -------------- plotters ---------------- |
---|
[3db96b0] | 466 | def plot_calc(r, Pr, q, Iq, theory=None, title=None): |
---|
[cfa28d3] | 467 | import matplotlib.pyplot as plt |
---|
| 468 | plt.subplot(211) |
---|
| 469 | plt.plot(r, Pr, '-', label="Pr") |
---|
| 470 | plt.xlabel('r (A)') |
---|
| 471 | plt.ylabel('Pr (1/A^2)') |
---|
[3db96b0] | 472 | if title is not None: |
---|
| 473 | plt.title(title) |
---|
[cfa28d3] | 474 | plt.subplot(212) |
---|
| 475 | plt.loglog(q, Iq, '-', label='from Pr') |
---|
| 476 | plt.xlabel('q (1/A') |
---|
| 477 | plt.ylabel('Iq') |
---|
| 478 | if theory is not None: |
---|
[7d0afa3] | 479 | plt.loglog(theory[0], theory[1]/theory[1][0], '-', label='analytic') |
---|
[cfa28d3] | 480 | plt.legend() |
---|
| 481 | |
---|
[3db96b0] | 482 | def plot_calc_2d(qx, qy, Iqxy, theory=None, title=None): |
---|
[226473d] | 483 | import matplotlib.pyplot as plt |
---|
| 484 | qx, qy = bin_edges(qx), bin_edges(qy) |
---|
| 485 | #qx, qy = np.meshgrid(qx, qy) |
---|
| 486 | if theory is not None: |
---|
| 487 | plt.subplot(121) |
---|
[3db96b0] | 488 | #plt.pcolor(qx, qy, np.log10(Iqxy)) |
---|
| 489 | extent = [qx[0], qx[-1], qy[0], qy[-1]] |
---|
| 490 | plt.imshow(np.log10(Iqxy), extent=extent, interpolation="nearest", |
---|
| 491 | origin='lower') |
---|
[226473d] | 492 | plt.xlabel('qx (1/A)') |
---|
| 493 | plt.ylabel('qy (1/A)') |
---|
[3db96b0] | 494 | plt.axis('equal') |
---|
| 495 | plt.axis(extent) |
---|
| 496 | #plt.grid(True) |
---|
| 497 | if title is not None: |
---|
| 498 | plt.title(title) |
---|
[226473d] | 499 | if theory is not None: |
---|
| 500 | plt.subplot(122) |
---|
[3db96b0] | 501 | plt.imshow(np.log10(theory), extent=extent, interpolation="nearest", |
---|
| 502 | origin='lower') |
---|
| 503 | plt.axis('equal') |
---|
| 504 | plt.axis(extent) |
---|
[226473d] | 505 | plt.xlabel('qx (1/A)') |
---|
| 506 | |
---|
[cfa28d3] | 507 | def plot_points(rho, points): |
---|
| 508 | import mpl_toolkits.mplot3d |
---|
| 509 | import matplotlib.pyplot as plt |
---|
| 510 | |
---|
| 511 | ax = plt.axes(projection='3d') |
---|
| 512 | try: |
---|
| 513 | ax.axis('square') |
---|
| 514 | except Exception: |
---|
| 515 | pass |
---|
| 516 | n = len(points) |
---|
[2ab331f] | 517 | #print("len points", n) |
---|
| 518 | index = np.random.choice(n, size=500) if n > 500 else slice(None, None) |
---|
[cfa28d3] | 519 | ax.scatter(points[index, 0], points[index, 1], points[index, 2], c=rho[index]) |
---|
[4f6f9431] | 520 | # make square axes |
---|
| 521 | minmax = np.array([points.min(), points.max()]) |
---|
| 522 | ax.scatter(minmax, minmax, minmax, c='w') |
---|
[cfa28d3] | 523 | #low, high = points.min(axis=0), points.max(axis=0) |
---|
| 524 | #ax.axis([low[0], high[0], low[1], high[1], low[2], high[2]]) |
---|
[893bea2] | 525 | ax.set_xlabel("x") |
---|
| 526 | ax.set_ylabel("y") |
---|
| 527 | ax.set_zlabel("z") |
---|
[cfa28d3] | 528 | ax.autoscale(True) |
---|
| 529 | |
---|
[7d0afa3] | 530 | # ----------- Analytic models -------------- |
---|
[97be877] | 531 | def sas_sinx_x(x): |
---|
| 532 | with np.errstate(all='ignore'): |
---|
| 533 | retvalue = sin(x)/x |
---|
| 534 | retvalue[x == 0.] = 1. |
---|
| 535 | return retvalue |
---|
| 536 | |
---|
[cfa28d3] | 537 | def sas_2J1x_x(x): |
---|
| 538 | with np.errstate(all='ignore'): |
---|
| 539 | retvalue = 2*J1(x)/x |
---|
| 540 | retvalue[x == 0] = 1. |
---|
| 541 | return retvalue |
---|
| 542 | |
---|
| 543 | def sas_3j1x_x(x): |
---|
| 544 | """return 3*j1(x)/x""" |
---|
| 545 | with np.errstate(all='ignore'): |
---|
| 546 | retvalue = 3*(sin(x) - x*cos(x))/x**3 |
---|
| 547 | retvalue[x == 0.] = 1. |
---|
| 548 | return retvalue |
---|
| 549 | |
---|
| 550 | def cylinder_Iq(q, radius, length): |
---|
[a1c32c2] | 551 | z, w = leggauss(76) |
---|
| 552 | cos_alpha = (z+1)/2 |
---|
| 553 | sin_alpha = sqrt(1.0 - cos_alpha**2) |
---|
[cfa28d3] | 554 | Iq = np.empty_like(q) |
---|
| 555 | for k, qk in enumerate(q): |
---|
[a1c32c2] | 556 | qab, qc = qk*sin_alpha, qk*cos_alpha |
---|
[7d0afa3] | 557 | Fq = sas_2J1x_x(qab*radius) * sas_sinx_x(qc*length/2) |
---|
[a1c32c2] | 558 | Iq[k] = np.sum(w*Fq**2) |
---|
[032646d] | 559 | Iq = Iq |
---|
[cfa28d3] | 560 | return Iq |
---|
| 561 | |
---|
[226473d] | 562 | def cylinder_Iqxy(qx, qy, radius, length, view=(0, 0, 0)): |
---|
| 563 | qa, qb, qc = invert_view(qx, qy, view) |
---|
[7d0afa3] | 564 | qab = sqrt(qa**2 + qb**2) |
---|
| 565 | Fq = sas_2J1x_x(qab*radius) * sas_sinx_x(qc*length/2) |
---|
[226473d] | 566 | Iq = Fq**2 |
---|
| 567 | return Iq.reshape(qx.shape) |
---|
| 568 | |
---|
[cfa28d3] | 569 | def sphere_Iq(q, radius): |
---|
| 570 | Iq = sas_3j1x_x(q*radius)**2 |
---|
[032646d] | 571 | return Iq |
---|
[cfa28d3] | 572 | |
---|
[7d0afa3] | 573 | def box_Iq(q, a, b, c): |
---|
| 574 | z, w = leggauss(76) |
---|
| 575 | outer_sum = np.zeros_like(q) |
---|
| 576 | for cos_alpha, outer_w in zip((z+1)/2, w): |
---|
| 577 | sin_alpha = sqrt(1.0-cos_alpha*cos_alpha) |
---|
| 578 | qc = q*cos_alpha |
---|
| 579 | siC = c*sas_sinx_x(c*qc/2) |
---|
| 580 | inner_sum = np.zeros_like(q) |
---|
| 581 | for beta, inner_w in zip((z + 1)*pi/4, w): |
---|
| 582 | qa, qb = q*sin_alpha*sin(beta), q*sin_alpha*cos(beta) |
---|
| 583 | siA = a*sas_sinx_x(a*qa/2) |
---|
| 584 | siB = b*sas_sinx_x(b*qb/2) |
---|
| 585 | Fq = siA*siB*siC |
---|
| 586 | inner_sum += inner_w * Fq**2 |
---|
| 587 | outer_sum += outer_w * inner_sum |
---|
| 588 | Iq = outer_sum / 4 # = outer*um*zm*8.0/(4.0*M_PI) |
---|
[032646d] | 589 | return Iq |
---|
[7d0afa3] | 590 | |
---|
| 591 | def box_Iqxy(qx, qy, a, b, c, view=(0, 0, 0)): |
---|
| 592 | qa, qb, qc = invert_view(qx, qy, view) |
---|
| 593 | sia = sas_sinx_x(qa*a/2) |
---|
| 594 | sib = sas_sinx_x(qb*b/2) |
---|
| 595 | sic = sas_sinx_x(qc*c/2) |
---|
| 596 | Fq = sia*sib*sic |
---|
| 597 | Iq = Fq**2 |
---|
| 598 | return Iq.reshape(qx.shape) |
---|
| 599 | |
---|
[cfa28d3] | 600 | def csbox_Iq(q, a, b, c, da, db, dc, slda, sldb, sldc, sld_core): |
---|
[a1c32c2] | 601 | z, w = leggauss(76) |
---|
| 602 | |
---|
[cfa28d3] | 603 | sld_solvent = 0 |
---|
| 604 | overlapping = False |
---|
| 605 | dr0 = sld_core - sld_solvent |
---|
| 606 | drA, drB, drC = slda-sld_solvent, sldb-sld_solvent, sldc-sld_solvent |
---|
| 607 | tA, tB, tC = a + 2*da, b + 2*db, c + 2*dc |
---|
| 608 | |
---|
[a1c32c2] | 609 | outer_sum = np.zeros_like(q) |
---|
| 610 | for cos_alpha, outer_w in zip((z+1)/2, w): |
---|
[cfa28d3] | 611 | sin_alpha = sqrt(1.0-cos_alpha*cos_alpha) |
---|
| 612 | qc = q*cos_alpha |
---|
[7d0afa3] | 613 | siC = c*sas_sinx_x(c*qc/2) |
---|
| 614 | siCt = tC*sas_sinx_x(tC*qc/2) |
---|
[a1c32c2] | 615 | inner_sum = np.zeros_like(q) |
---|
| 616 | for beta, inner_w in zip((z + 1)*pi/4, w): |
---|
[cfa28d3] | 617 | qa, qb = q*sin_alpha*sin(beta), q*sin_alpha*cos(beta) |
---|
[7d0afa3] | 618 | siA = a*sas_sinx_x(a*qa/2) |
---|
| 619 | siB = b*sas_sinx_x(b*qb/2) |
---|
| 620 | siAt = tA*sas_sinx_x(tA*qa/2) |
---|
| 621 | siBt = tB*sas_sinx_x(tB*qb/2) |
---|
[cfa28d3] | 622 | if overlapping: |
---|
[a1c32c2] | 623 | Fq = (dr0*siA*siB*siC |
---|
| 624 | + drA*(siAt-siA)*siB*siC |
---|
| 625 | + drB*siAt*(siBt-siB)*siC |
---|
| 626 | + drC*siAt*siBt*(siCt-siC)) |
---|
[cfa28d3] | 627 | else: |
---|
[a1c32c2] | 628 | Fq = (dr0*siA*siB*siC |
---|
| 629 | + drA*(siAt-siA)*siB*siC |
---|
| 630 | + drB*siA*(siBt-siB)*siC |
---|
| 631 | + drC*siA*siB*(siCt-siC)) |
---|
| 632 | inner_sum += inner_w * Fq**2 |
---|
| 633 | outer_sum += outer_w * inner_sum |
---|
| 634 | Iq = outer_sum / 4 # = outer*um*zm*8.0/(4.0*M_PI) |
---|
[cfa28d3] | 635 | return Iq/Iq[0] |
---|
| 636 | |
---|
[97be877] | 637 | def csbox_Iqxy(qx, qy, a, b, c, da, db, dc, slda, sldb, sldc, sld_core, view=(0,0,0)): |
---|
| 638 | qa, qb, qc = invert_view(qx, qy, view) |
---|
[226473d] | 639 | |
---|
[97be877] | 640 | sld_solvent = 0 |
---|
| 641 | overlapping = False |
---|
| 642 | dr0 = sld_core - sld_solvent |
---|
| 643 | drA, drB, drC = slda-sld_solvent, sldb-sld_solvent, sldc-sld_solvent |
---|
| 644 | tA, tB, tC = a + 2*da, b + 2*db, c + 2*dc |
---|
| 645 | siA = a*sas_sinx_x(a*qa/2) |
---|
| 646 | siB = b*sas_sinx_x(b*qb/2) |
---|
| 647 | siC = c*sas_sinx_x(c*qc/2) |
---|
| 648 | siAt = tA*sas_sinx_x(tA*qa/2) |
---|
| 649 | siBt = tB*sas_sinx_x(tB*qb/2) |
---|
| 650 | siCt = tC*sas_sinx_x(tC*qc/2) |
---|
| 651 | Fq = (dr0*siA*siB*siC |
---|
| 652 | + drA*(siAt-siA)*siB*siC |
---|
| 653 | + drB*siA*(siBt-siB)*siC |
---|
| 654 | + drC*siA*siB*(siCt-siC)) |
---|
| 655 | Iq = Fq**2 |
---|
| 656 | return Iq.reshape(qx.shape) |
---|
[226473d] | 657 | |
---|
[893bea2] | 658 | def sasmodels_Iq(kernel, q, pars): |
---|
| 659 | from sasmodels.data import empty_data1D |
---|
| 660 | from sasmodels.direct_model import DirectModel |
---|
| 661 | data = empty_data1D(q) |
---|
| 662 | calculator = DirectModel(data, kernel) |
---|
| 663 | Iq = calculator(**pars) |
---|
| 664 | return Iq |
---|
| 665 | |
---|
| 666 | def sasmodels_Iqxy(kernel, qx, qy, pars, view): |
---|
| 667 | from sasmodels.data import Data2D |
---|
| 668 | from sasmodels.direct_model import DirectModel |
---|
| 669 | Iq = 100 * np.ones_like(qx) |
---|
| 670 | data = Data2D(x=qx, y=qy, z=Iq, dx=None, dy=None, dz=np.sqrt(Iq)) |
---|
| 671 | data.x_bins = qx[0,:] |
---|
| 672 | data.y_bins = qy[:,0] |
---|
| 673 | data.filename = "fake data" |
---|
| 674 | |
---|
| 675 | calculator = DirectModel(data, kernel) |
---|
| 676 | pars_plus_view = pars.copy() |
---|
| 677 | pars_plus_view.update(theta=view[0], phi=view[1], psi=view[2]) |
---|
| 678 | Iqxy = calculator(**pars_plus_view) |
---|
| 679 | return Iqxy.reshape(qx.shape) |
---|
| 680 | |
---|
| 681 | def wrap_sasmodel(name, **pars): |
---|
| 682 | from sasmodels.core import load_model |
---|
| 683 | kernel = load_model(name) |
---|
| 684 | fn = lambda q: sasmodels_Iq(kernel, q, pars) |
---|
| 685 | fn_xy = lambda qx, qy, view: sasmodels_Iqxy(kernel, qx, qy, pars, view) |
---|
| 686 | return fn, fn_xy |
---|
| 687 | |
---|
| 688 | |
---|
[7d0afa3] | 689 | # --------- Test cases ----------- |
---|
[cfa28d3] | 690 | |
---|
[032646d] | 691 | def build_cylinder(radius=25, length=125, rho=2.): |
---|
[226473d] | 692 | shape = EllipticalCylinder(radius, radius, length, rho) |
---|
[7d0afa3] | 693 | fn = lambda q: cylinder_Iq(q, radius, length)*rho**2 |
---|
| 694 | fn_xy = lambda qx, qy, view: cylinder_Iqxy(qx, qy, radius, length, view=view)*rho**2 |
---|
| 695 | return shape, fn, fn_xy |
---|
[226473d] | 696 | |
---|
[032646d] | 697 | def build_sphere(radius=125, rho=2): |
---|
[cfa28d3] | 698 | shape = TriaxialEllipsoid(radius, radius, radius, rho) |
---|
[032646d] | 699 | fn = lambda q: sphere_Iq(q, radius)*rho**2 |
---|
[7d0afa3] | 700 | fn_xy = lambda qx, qy, view: sphere_Iq(np.sqrt(qx**2+qy**2), radius)*rho**2 |
---|
| 701 | return shape, fn, fn_xy |
---|
| 702 | |
---|
[032646d] | 703 | def build_box(a=10, b=20, c=30, rho=2.): |
---|
[7d0afa3] | 704 | shape = Box(a, b, c, rho) |
---|
| 705 | fn = lambda q: box_Iq(q, a, b, c)*rho**2 |
---|
| 706 | fn_xy = lambda qx, qy, view: box_Iqxy(qx, qy, a, b, c, view=view)*rho**2 |
---|
| 707 | return shape, fn, fn_xy |
---|
| 708 | |
---|
[032646d] | 709 | def build_csbox(a=10, b=20, c=30, da=1, db=2, dc=3, slda=1, sldb=2, sldc=3, sld_core=4): |
---|
[7d0afa3] | 710 | shape = csbox(a, b, c, da, db, dc, slda, sldb, sldc, sld_core) |
---|
| 711 | fn = lambda q: csbox_Iq(q, a, b, c, da, db, dc, slda, sldb, sldc, sld_core) |
---|
| 712 | fn_xy = lambda qx, qy, view: csbox_Iqxy(qx, qy, a, b, c, da, db, dc, |
---|
| 713 | slda, sldb, sldc, sld_core, view=view) |
---|
| 714 | return shape, fn, fn_xy |
---|
| 715 | |
---|
[893bea2] | 716 | def build_ellcyl(ra=25, rb=50, length=125, rho=2.): |
---|
| 717 | shape = EllipticalCylinder(ra, rb, length, rho) |
---|
| 718 | fn, fn_xy = wrap_sasmodel( |
---|
| 719 | 'elliptical_cylinder', |
---|
| 720 | scale=1, |
---|
| 721 | background=0, |
---|
| 722 | radius_minor=ra, |
---|
| 723 | axis_ratio=rb/ra, |
---|
| 724 | length=length, |
---|
| 725 | sld=rho, |
---|
| 726 | sld_solvent=0, |
---|
| 727 | ) |
---|
| 728 | return shape, fn, fn_xy |
---|
| 729 | |
---|
| 730 | def build_cscyl(ra=30, rb=90, length=30, thick_rim=8, thick_face=14, |
---|
| 731 | sld_core=4, sld_rim=1, sld_face=7): |
---|
| 732 | shape = EllipticalBicelle( |
---|
| 733 | ra=ra, rb=rb, length=length, |
---|
| 734 | thick_rim=thick_rim, thick_face=thick_face, |
---|
| 735 | value_core=sld_core, value_rim=sld_rim, value_face=sld_face, |
---|
| 736 | ) |
---|
| 737 | fn, fn_xy = wrap_sasmodel( |
---|
| 738 | 'core_shell_bicelle_elliptical', |
---|
| 739 | scale=1, |
---|
| 740 | background=0, |
---|
[4f6f9431] | 741 | radius=ra, |
---|
| 742 | x_core=rb/ra, |
---|
[893bea2] | 743 | length=length, |
---|
[362a66f] | 744 | thick_rim=thick_rim, |
---|
| 745 | thick_face=thick_face, |
---|
[893bea2] | 746 | sld_core=sld_core, |
---|
| 747 | sld_face=sld_face, |
---|
| 748 | sld_rim=sld_rim, |
---|
| 749 | sld_solvent=0, |
---|
| 750 | ) |
---|
| 751 | return shape, fn, fn_xy |
---|
| 752 | |
---|
[032646d] | 753 | def build_cubic_lattice(shape, nx=1, ny=1, nz=1, dx=2, dy=2, dz=2, |
---|
| 754 | shuffle=0, rotate=0): |
---|
| 755 | a, b, c = shape.dims |
---|
| 756 | shapes = [copy(shape) |
---|
| 757 | .shift((ix+(randn() if shuffle < 0.3 else rand())*shuffle)*dx*a, |
---|
| 758 | (iy+(randn() if shuffle < 0.3 else rand())*shuffle)*dy*b, |
---|
| 759 | (iz+(randn() if shuffle < 0.3 else rand())*shuffle)*dz*c) |
---|
| 760 | .rotate(*((randn(3) if rotate < 30 else rand(3))*rotate)) |
---|
| 761 | for ix in range(nx) |
---|
| 762 | for iy in range(ny) |
---|
| 763 | for iz in range(nz)] |
---|
| 764 | lattice = Composite(shapes) |
---|
| 765 | return lattice |
---|
| 766 | |
---|
[7d0afa3] | 767 | |
---|
| 768 | SHAPE_FUNCTIONS = OrderedDict([ |
---|
[893bea2] | 769 | ("cyl", build_cylinder), |
---|
| 770 | ("ellcyl", build_ellcyl), |
---|
[032646d] | 771 | ("sphere", build_sphere), |
---|
| 772 | ("box", build_box), |
---|
| 773 | ("csbox", build_csbox), |
---|
[893bea2] | 774 | ("cscyl", build_cscyl), |
---|
[7d0afa3] | 775 | ]) |
---|
| 776 | SHAPES = list(SHAPE_FUNCTIONS.keys()) |
---|
| 777 | |
---|
| 778 | def check_shape(title, shape, fn=None, show_points=False, |
---|
| 779 | mesh=100, qmax=1.0, r_step=0.01, samples=5000): |
---|
| 780 | rho_solvent = 0 |
---|
[032646d] | 781 | qmin = qmax/100. |
---|
[7d0afa3] | 782 | q = np.logspace(np.log10(qmin), np.log10(qmax), mesh) |
---|
| 783 | r = shape.r_bins(q, r_step=r_step) |
---|
[032646d] | 784 | sampling_density = samples / shape.volume |
---|
[7d0afa3] | 785 | rho, points = shape.sample(sampling_density) |
---|
| 786 | t0 = time.time() |
---|
| 787 | Pr = calc_Pr(r, rho-rho_solvent, points) |
---|
| 788 | print("calc Pr time", time.time() - t0) |
---|
| 789 | Iq = calc_Iq(q, r, Pr) |
---|
| 790 | theory = (q, fn(q)) if fn is not None else None |
---|
| 791 | |
---|
| 792 | import pylab |
---|
| 793 | if show_points: |
---|
| 794 | plot_points(rho, points); pylab.figure() |
---|
[3db96b0] | 795 | plot_calc(r, Pr, q, Iq, theory=theory, title=title) |
---|
[7d0afa3] | 796 | pylab.gcf().canvas.set_window_title(title) |
---|
| 797 | pylab.show() |
---|
| 798 | |
---|
| 799 | def check_shape_2d(title, shape, fn=None, view=(0, 0, 0), show_points=False, |
---|
| 800 | mesh=100, qmax=1.0, samples=5000): |
---|
| 801 | rho_solvent = 0 |
---|
[893bea2] | 802 | #qx = np.linspace(0.0, qmax, mesh) |
---|
| 803 | #qy = np.linspace(0.0, qmax, mesh) |
---|
| 804 | qx = np.linspace(-qmax, qmax, mesh) |
---|
| 805 | qy = np.linspace(-qmax, qmax, mesh) |
---|
[7d0afa3] | 806 | Qx, Qy = np.meshgrid(qx, qy) |
---|
[032646d] | 807 | sampling_density = samples / shape.volume |
---|
| 808 | t0 = time.time() |
---|
[7d0afa3] | 809 | rho, points = shape.sample(sampling_density) |
---|
[032646d] | 810 | print("point generation time", time.time() - t0) |
---|
[7d0afa3] | 811 | t0 = time.time() |
---|
| 812 | Iqxy = calc_Iqxy(Qx, Qy, rho, points, view=view) |
---|
| 813 | print("calc Iqxy time", time.time() - t0) |
---|
[893bea2] | 814 | t0 = time.time() |
---|
[7d0afa3] | 815 | theory = fn(Qx, Qy, view) if fn is not None else None |
---|
[893bea2] | 816 | print("calc theory time", time.time() - t0) |
---|
[7d0afa3] | 817 | Iqxy += 0.001 * Iqxy.max() |
---|
| 818 | if theory is not None: |
---|
| 819 | theory += 0.001 * theory.max() |
---|
| 820 | |
---|
| 821 | import pylab |
---|
| 822 | if show_points: |
---|
| 823 | plot_points(rho, points); pylab.figure() |
---|
[3db96b0] | 824 | plot_calc_2d(qx, qy, Iqxy, theory=theory, title=title) |
---|
[7d0afa3] | 825 | pylab.gcf().canvas.set_window_title(title) |
---|
| 826 | pylab.show() |
---|
| 827 | |
---|
| 828 | def main(): |
---|
| 829 | parser = argparse.ArgumentParser( |
---|
| 830 | description="Compute scattering from realspace sampling", |
---|
| 831 | formatter_class=argparse.ArgumentDefaultsHelpFormatter, |
---|
| 832 | ) |
---|
[032646d] | 833 | parser.add_argument('-d', '--dim', type=int, default=1, |
---|
| 834 | help='dimension 1 or 2') |
---|
| 835 | parser.add_argument('-m', '--mesh', type=int, default=100, |
---|
| 836 | help='number of mesh points') |
---|
| 837 | parser.add_argument('-s', '--samples', type=int, default=5000, |
---|
| 838 | help="number of sample points") |
---|
| 839 | parser.add_argument('-q', '--qmax', type=float, default=0.5, |
---|
| 840 | help='max q') |
---|
| 841 | parser.add_argument('-v', '--view', type=str, default='0,0,0', |
---|
| 842 | help='theta,phi,psi angles') |
---|
| 843 | parser.add_argument('-n', '--lattice', type=str, default='1,1,1', |
---|
| 844 | help='lattice size') |
---|
| 845 | parser.add_argument('-z', '--spacing', type=str, default='2,2,2', |
---|
| 846 | help='lattice spacing') |
---|
| 847 | parser.add_argument('-r', '--rotate', type=float, default=0., |
---|
| 848 | help="rotation relative to lattice, gaussian < 30 degrees, uniform otherwise") |
---|
| 849 | parser.add_argument('-w', '--shuffle', type=float, default=0., |
---|
| 850 | help="position relative to lattice, gaussian < 0.3, uniform otherwise") |
---|
| 851 | parser.add_argument('-p', '--plot', action='store_true', |
---|
| 852 | help='plot points') |
---|
| 853 | parser.add_argument('shape', choices=SHAPES, nargs='?', default=SHAPES[0], |
---|
| 854 | help='oriented shape') |
---|
[7d0afa3] | 855 | parser.add_argument('pars', type=str, nargs='*', help='shape parameters') |
---|
| 856 | opts = parser.parse_args() |
---|
| 857 | pars = {key: float(value) for p in opts.pars for key, value in [p.split('=')]} |
---|
[032646d] | 858 | nx, ny, nz = [int(v) for v in opts.lattice.split(',')] |
---|
| 859 | dx, dy, dz = [float(v) for v in opts.spacing.split(',')] |
---|
| 860 | shuffle, rotate = opts.shuffle, opts.rotate |
---|
[7d0afa3] | 861 | shape, fn, fn_xy = SHAPE_FUNCTIONS[opts.shape](**pars) |
---|
[032646d] | 862 | if nx > 1 or ny > 1 or nz > 1: |
---|
| 863 | shape = build_cubic_lattice(shape, nx, ny, nz, dx, dy, dz, shuffle, rotate) |
---|
[7d0afa3] | 864 | title = "%s(%s)" % (opts.shape, " ".join(opts.pars)) |
---|
| 865 | if opts.dim == 1: |
---|
| 866 | check_shape(title, shape, fn, show_points=opts.plot, |
---|
| 867 | mesh=opts.mesh, qmax=opts.qmax, samples=opts.samples) |
---|
| 868 | else: |
---|
| 869 | view = tuple(float(v) for v in opts.view.split(',')) |
---|
| 870 | check_shape_2d(title, shape, fn_xy, view=view, show_points=opts.plot, |
---|
| 871 | mesh=opts.mesh, qmax=opts.qmax, samples=opts.samples) |
---|
[cfa28d3] | 872 | |
---|
[97be877] | 873 | |
---|
[cfa28d3] | 874 | if __name__ == "__main__": |
---|
[7d0afa3] | 875 | main() |
---|