[e6f1410] | 1 | r""" |
---|
[452b168] | 2 | Show numerical precision of $\ln \Gamma(x)$. |
---|
[e6f1410] | 3 | """ |
---|
| 4 | |
---|
| 5 | import numpy as np |
---|
| 6 | import scipy.special |
---|
| 7 | from sympy.mpmath import mp |
---|
| 8 | #import matplotlib; matplotlib.use('TkAgg') |
---|
| 9 | import pylab |
---|
| 10 | |
---|
| 11 | mp.dps = 150 # number of digits to use in estimating true value |
---|
| 12 | |
---|
| 13 | SHOW_DIFF = True # True if show diff rather than function value |
---|
| 14 | LINEAR_X = False # True if q is linearly spaced instead of log spaced |
---|
| 15 | |
---|
| 16 | def mp_gamma(vec): |
---|
| 17 | """ |
---|
| 18 | Direct calculation using sympy multiprecision library. |
---|
| 19 | """ |
---|
| 20 | return [_mp_fn(mp.mpf(x)) for x in vec] |
---|
| 21 | |
---|
| 22 | def _mp_fn(x): |
---|
| 23 | """ |
---|
| 24 | Helper funciton for mp_j1c |
---|
| 25 | """ |
---|
| 26 | #return mp.gamma(x) |
---|
| 27 | return mp.loggamma(x) |
---|
| 28 | |
---|
| 29 | def np_gamma(x, dtype): |
---|
| 30 | """ |
---|
| 31 | Direct calculation using scipy. |
---|
| 32 | """ |
---|
| 33 | x = np.asarray(x, dtype) |
---|
| 34 | return scipy.special.gammaln(x) |
---|
| 35 | #return scipy.special.gamma(x) |
---|
| 36 | |
---|
| 37 | def lanczos_gamma(x, dtype): |
---|
| 38 | coeff = np.asarray(( |
---|
| 39 | 76.18009172947146, -86.50532032941677, |
---|
| 40 | 24.01409824083091, -1.231739572450155, |
---|
| 41 | 0.1208650973866179e-2,-0.5395239384953e-5), dtype) |
---|
| 42 | |
---|
| 43 | x = np.asarray(x, dtype) |
---|
| 44 | tmp = x + np.asarray(5.5, dtype) |
---|
| 45 | tmp -= (x + np.asarray(0.5, dtype))*np.log(tmp) |
---|
| 46 | ser = np.ones_like(x)*np.asarray(1.000000000190015, dtype) |
---|
| 47 | for k,c in enumerate(coeff): |
---|
| 48 | ser += c/(x + np.asarray(k+1, dtype)) |
---|
| 49 | return -tmp+np.log(np.asarray(2.5066282746310005, dtype)*ser/x); |
---|
| 50 | |
---|
| 51 | def plotdiff(x, target, actual, label): |
---|
| 52 | """ |
---|
| 53 | Plot the computed value. |
---|
| 54 | |
---|
| 55 | Use relative error if SHOW_DIFF, otherwise just plot the value directly. |
---|
| 56 | """ |
---|
| 57 | if SHOW_DIFF: |
---|
| 58 | err = np.clip(abs((target-actual)/target), 0, 1) |
---|
| 59 | pylab.loglog(x, err, '-', label=label) |
---|
| 60 | else: |
---|
| 61 | limits = np.min(target), np.max(target) |
---|
| 62 | pylab.loglog(x, np.clip(actual,*limits), '-', label=label) |
---|
| 63 | |
---|
| 64 | def compare(x, precision): |
---|
| 65 | r""" |
---|
| 66 | Compare the different computation methods using the given precision. |
---|
| 67 | """ |
---|
| 68 | target = np.asarray(mp_gamma(x), 'double') |
---|
| 69 | direct = np_gamma(x, precision) |
---|
| 70 | approx = lanczos_gamma(x, precision) |
---|
| 71 | plotdiff(x, target, direct, 'scipy '+precision) |
---|
| 72 | plotdiff(x, target, approx, 'sasmodels '+precision) |
---|
| 73 | pylab.xlabel("x (arbitrary)") |
---|
| 74 | if SHOW_DIFF: |
---|
| 75 | pylab.ylabel("relative error") |
---|
| 76 | else: |
---|
| 77 | pylab.ylabel("ln(gamma(x))") |
---|
| 78 | pylab.loglog(x, target, '-', label="true value") |
---|
| 79 | if LINEAR_X: |
---|
| 80 | pylab.xscale('linear') |
---|
| 81 | |
---|
| 82 | def main(): |
---|
| 83 | r""" |
---|
| 84 | Compare accuracy of different methods for computing $3 j_1(x)/x$. |
---|
| 85 | :return: |
---|
| 86 | """ |
---|
| 87 | if LINEAR_X: |
---|
| 88 | qr = np.linspace(1,1000,2000) |
---|
| 89 | else: |
---|
| 90 | qr = np.logspace(-3,5,400) |
---|
| 91 | pylab.subplot(121) |
---|
| 92 | compare(qr, 'single') |
---|
| 93 | pylab.legend(loc='best') |
---|
| 94 | pylab.subplot(122) |
---|
| 95 | compare(qr, 'double') |
---|
| 96 | pylab.legend(loc='best') |
---|
| 97 | pylab.suptitle('ln gamma') |
---|
| 98 | |
---|
| 99 | if __name__ == "__main__": |
---|
| 100 | main() |
---|
| 101 | pylab.show() |
---|