1 | #!/usr/bin/env python |
---|
2 | """ |
---|
3 | Application to explore the difference between sasview 3.x orientation |
---|
4 | dispersity and possible replacement algorithms. |
---|
5 | """ |
---|
6 | from __future__ import division, print_function |
---|
7 | |
---|
8 | import sys, os |
---|
9 | sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) |
---|
10 | |
---|
11 | import mpl_toolkits.mplot3d # Adds projection='3d' option to subplot |
---|
12 | import matplotlib.pyplot as plt |
---|
13 | from matplotlib.widgets import Slider, CheckButtons |
---|
14 | from matplotlib import cm |
---|
15 | import numpy as np |
---|
16 | from numpy import pi, cos, sin, sqrt, exp, degrees, radians |
---|
17 | |
---|
18 | SCALED_PHI = True |
---|
19 | |
---|
20 | def draw_beam(ax, view=(0, 0)): |
---|
21 | """ |
---|
22 | Draw the beam going from source at (0, 0, 1) to detector at (0, 0, -1) |
---|
23 | """ |
---|
24 | #ax.plot([0,0],[0,0],[1,-1]) |
---|
25 | #ax.scatter([0]*100,[0]*100,np.linspace(1, -1, 100), alpha=0.8) |
---|
26 | |
---|
27 | steps = 25 |
---|
28 | u = np.linspace(0, 2 * np.pi, steps) |
---|
29 | v = np.linspace(-1, 1, steps) |
---|
30 | |
---|
31 | r = 0.02 |
---|
32 | x = r*np.outer(np.cos(u), np.ones_like(v)) |
---|
33 | y = r*np.outer(np.sin(u), np.ones_like(v)) |
---|
34 | z = 1.3*np.outer(np.ones_like(u), v) |
---|
35 | |
---|
36 | theta, phi = view |
---|
37 | shape = x.shape |
---|
38 | points = np.matrix([x.flatten(), y.flatten(), z.flatten()]) |
---|
39 | points = Rz(phi)*Ry(theta)*points |
---|
40 | x, y, z = [v.reshape(shape) for v in points] |
---|
41 | |
---|
42 | ax.plot_surface(x, y, z, rstride=4, cstride=4, color='y', alpha=0.5) |
---|
43 | |
---|
44 | def draw_jitter(ax, view, jitter, dist='gaussian', size=(0.1, 0.4, 1.0)): |
---|
45 | """ |
---|
46 | Represent jitter as a set of shapes at different orientations. |
---|
47 | """ |
---|
48 | # set max diagonal to 0.95 |
---|
49 | scale = 0.95/sqrt(sum(v**2 for v in size)) |
---|
50 | size = tuple(scale*v for v in size) |
---|
51 | draw_shape = draw_parallelepiped |
---|
52 | #draw_shape = draw_ellipsoid |
---|
53 | |
---|
54 | #np.random.seed(10) |
---|
55 | #cloud = np.random.randn(10,3) |
---|
56 | cloud = [ |
---|
57 | [-1, -1, -1], |
---|
58 | [-1, -1, 0], |
---|
59 | [-1, -1, 1], |
---|
60 | [-1, 0, -1], |
---|
61 | [-1, 0, 0], |
---|
62 | [-1, 0, 1], |
---|
63 | [-1, 1, -1], |
---|
64 | [-1, 1, 0], |
---|
65 | [-1, 1, 1], |
---|
66 | [ 0, -1, -1], |
---|
67 | [ 0, -1, 0], |
---|
68 | [ 0, -1, 1], |
---|
69 | [ 0, 0, -1], |
---|
70 | [ 0, 0, 0], |
---|
71 | [ 0, 0, 1], |
---|
72 | [ 0, 1, -1], |
---|
73 | [ 0, 1, 0], |
---|
74 | [ 0, 1, 1], |
---|
75 | [ 1, -1, -1], |
---|
76 | [ 1, -1, 0], |
---|
77 | [ 1, -1, 1], |
---|
78 | [ 1, 0, -1], |
---|
79 | [ 1, 0, 0], |
---|
80 | [ 1, 0, 1], |
---|
81 | [ 1, 1, -1], |
---|
82 | [ 1, 1, 0], |
---|
83 | [ 1, 1, 1], |
---|
84 | ] |
---|
85 | dtheta, dphi, dpsi = jitter |
---|
86 | if dtheta == 0: |
---|
87 | cloud = [v for v in cloud if v[0] == 0] |
---|
88 | if dphi == 0: |
---|
89 | cloud = [v for v in cloud if v[1] == 0] |
---|
90 | if dpsi == 0: |
---|
91 | cloud = [v for v in cloud if v[2] == 0] |
---|
92 | draw_shape(ax, size, view, [0, 0, 0], steps=100, alpha=0.8) |
---|
93 | scale = 1/sqrt(3) if dist == 'rectangle' else 1 |
---|
94 | for point in cloud: |
---|
95 | delta = [scale*dtheta*point[0], scale*dphi*point[1], scale*dpsi*point[2]] |
---|
96 | draw_shape(ax, size, view, delta, alpha=0.8) |
---|
97 | for v in 'xyz': |
---|
98 | a, b, c = size |
---|
99 | lim = np.sqrt(a**2+b**2+c**2) |
---|
100 | getattr(ax, 'set_'+v+'lim')([-lim, lim]) |
---|
101 | getattr(ax, v+'axis').label.set_text(v) |
---|
102 | |
---|
103 | def draw_ellipsoid(ax, size, view, jitter, steps=25, alpha=1): |
---|
104 | """Draw an ellipsoid.""" |
---|
105 | a,b,c = size |
---|
106 | u = np.linspace(0, 2 * np.pi, steps) |
---|
107 | v = np.linspace(0, np.pi, steps) |
---|
108 | x = a*np.outer(np.cos(u), np.sin(v)) |
---|
109 | y = b*np.outer(np.sin(u), np.sin(v)) |
---|
110 | z = c*np.outer(np.ones_like(u), np.cos(v)) |
---|
111 | x, y, z = transform_xyz(view, jitter, x, y, z) |
---|
112 | |
---|
113 | ax.plot_surface(x, y, z, rstride=4, cstride=4, color='w', alpha=alpha) |
---|
114 | |
---|
115 | draw_labels(ax, view, jitter, [ |
---|
116 | ('c+', [ 0, 0, c], [ 1, 0, 0]), |
---|
117 | ('c-', [ 0, 0,-c], [ 0, 0,-1]), |
---|
118 | ('a+', [ a, 0, 0], [ 0, 0, 1]), |
---|
119 | ('a-', [-a, 0, 0], [ 0, 0,-1]), |
---|
120 | ('b+', [ 0, b, 0], [-1, 0, 0]), |
---|
121 | ('b-', [ 0,-b, 0], [-1, 0, 0]), |
---|
122 | ]) |
---|
123 | |
---|
124 | def draw_parallelepiped(ax, size, view, jitter, steps=None, alpha=1): |
---|
125 | """Draw a parallelepiped.""" |
---|
126 | a,b,c = size |
---|
127 | x = a*np.array([ 1,-1, 1,-1, 1,-1, 1,-1]) |
---|
128 | y = b*np.array([ 1, 1,-1,-1, 1, 1,-1,-1]) |
---|
129 | z = c*np.array([ 1, 1, 1, 1,-1,-1,-1,-1]) |
---|
130 | tri = np.array([ |
---|
131 | # counter clockwise triangles |
---|
132 | # z: up/down, x: right/left, y: front/back |
---|
133 | [0,1,2], [3,2,1], # top face |
---|
134 | [6,5,4], [5,6,7], # bottom face |
---|
135 | [0,2,6], [6,4,0], # right face |
---|
136 | [1,5,7], [7,3,1], # left face |
---|
137 | [2,3,6], [7,6,3], # front face |
---|
138 | [4,1,0], [5,1,4], # back face |
---|
139 | ]) |
---|
140 | |
---|
141 | x, y, z = transform_xyz(view, jitter, x, y, z) |
---|
142 | ax.plot_trisurf(x, y, triangles=tri, Z=z, color='w', alpha=alpha) |
---|
143 | |
---|
144 | draw_labels(ax, view, jitter, [ |
---|
145 | ('c+', [ 0, 0, c], [ 1, 0, 0]), |
---|
146 | ('c-', [ 0, 0,-c], [ 0, 0,-1]), |
---|
147 | ('a+', [ a, 0, 0], [ 0, 0, 1]), |
---|
148 | ('a-', [-a, 0, 0], [ 0, 0,-1]), |
---|
149 | ('b+', [ 0, b, 0], [-1, 0, 0]), |
---|
150 | ('b-', [ 0,-b, 0], [-1, 0, 0]), |
---|
151 | ]) |
---|
152 | |
---|
153 | def draw_sphere(ax, radius=10., steps=100): |
---|
154 | """Draw a sphere""" |
---|
155 | u = np.linspace(0, 2 * np.pi, steps) |
---|
156 | v = np.linspace(0, np.pi, steps) |
---|
157 | |
---|
158 | x = radius * np.outer(np.cos(u), np.sin(v)) |
---|
159 | y = radius * np.outer(np.sin(u), np.sin(v)) |
---|
160 | z = radius * np.outer(np.ones(np.size(u)), np.cos(v)) |
---|
161 | ax.plot_surface(x, y, z, rstride=4, cstride=4, color='w') |
---|
162 | |
---|
163 | def draw_mesh(ax, view, jitter, radius=1.2, n=11, dist='gaussian'): |
---|
164 | """ |
---|
165 | Draw the dispersion mesh showing the theta-phi orientations at which |
---|
166 | the model will be evaluated. |
---|
167 | """ |
---|
168 | theta, phi, psi = view |
---|
169 | dtheta, dphi, dpsi = jitter |
---|
170 | |
---|
171 | if dist == 'gaussian': |
---|
172 | t = np.linspace(-3, 3, n) |
---|
173 | weights = exp(-0.5*t**2) |
---|
174 | elif dist == 'rectangle': |
---|
175 | # Note: uses sasmodels ridiculous definition of rectangle width |
---|
176 | t = np.linspace(-1, 1, n)*sqrt(3) |
---|
177 | weights = np.ones_like(t) |
---|
178 | else: |
---|
179 | raise ValueError("expected dist to be 'gaussian' or 'rectangle'") |
---|
180 | |
---|
181 | if SCALED_PHI: |
---|
182 | scale_phi = lambda dtheta, dphi: ( |
---|
183 | dphi/abs(cos(radians(dtheta))) if dtheta != 90 |
---|
184 | else 0 if dphi == 0 |
---|
185 | else 4*pi) |
---|
186 | w = np.outer(weights, weights) |
---|
187 | else: |
---|
188 | scale_phi = lambda dtheta, dphe: dphi |
---|
189 | w = np.outer(weights*cos(radians(dtheta*t)), weights) |
---|
190 | |
---|
191 | # mesh in theta, phi formed by rotating z |
---|
192 | z = np.matrix([[0], [0], [radius]]) |
---|
193 | points = np.hstack([Rx(scale_phi(theta_i, phi_j))*Ry(theta_i)*z |
---|
194 | for theta_i in dtheta*t |
---|
195 | for phi_j in dphi*t]) |
---|
196 | # select just the active points (i.e., those with phi < 180 |
---|
197 | active = np.array([abs(scale_phi(theta_i, phi_j)) < 180 |
---|
198 | for theta_i in dtheta*t |
---|
199 | for phi_j in dphi*t]) |
---|
200 | points = points[:, active] |
---|
201 | w = w.flatten()[active] |
---|
202 | |
---|
203 | # rotate relative to beam |
---|
204 | points = orient_relative_to_beam(view, points) |
---|
205 | |
---|
206 | x, y, z = [np.array(v).flatten() for v in points] |
---|
207 | ax.scatter(x, y, z, c=w, marker='o', vmin=0., vmax=1.) |
---|
208 | |
---|
209 | def draw_labels(ax, view, jitter, text): |
---|
210 | """ |
---|
211 | Draw text at a particular location. |
---|
212 | """ |
---|
213 | labels, locations, orientations = zip(*text) |
---|
214 | px, py, pz = zip(*locations) |
---|
215 | dx, dy, dz = zip(*orientations) |
---|
216 | |
---|
217 | px, py, pz = transform_xyz(view, jitter, px, py, pz) |
---|
218 | dx, dy, dz = transform_xyz(view, jitter, dx, dy, dz) |
---|
219 | |
---|
220 | # TODO: zdir for labels is broken, and labels aren't appearing. |
---|
221 | for label, p, zdir in zip(labels, zip(px, py, pz), zip(dx, dy, dz)): |
---|
222 | zdir = np.asarray(zdir).flatten() |
---|
223 | ax.text(p[0], p[1], p[2], label, zdir=zdir) |
---|
224 | |
---|
225 | # Definition of rotation matrices comes from wikipedia: |
---|
226 | # https://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations |
---|
227 | def Rx(angle): |
---|
228 | """Construct a matrix to rotate points about *x* by *angle* degrees.""" |
---|
229 | a = radians(angle) |
---|
230 | R = [[1, 0, 0], |
---|
231 | [0, +cos(a), -sin(a)], |
---|
232 | [0, +sin(a), +cos(a)]] |
---|
233 | return np.matrix(R) |
---|
234 | |
---|
235 | def Ry(angle): |
---|
236 | """Construct a matrix to rotate points about *y* by *angle* degrees.""" |
---|
237 | a = radians(angle) |
---|
238 | R = [[+cos(a), 0, +sin(a)], |
---|
239 | [0, 1, 0], |
---|
240 | [-sin(a), 0, +cos(a)]] |
---|
241 | return np.matrix(R) |
---|
242 | |
---|
243 | def Rz(angle): |
---|
244 | """Construct a matrix to rotate points about *z* by *angle* degrees.""" |
---|
245 | a = radians(angle) |
---|
246 | R = [[+cos(a), -sin(a), 0], |
---|
247 | [+sin(a), +cos(a), 0], |
---|
248 | [0, 0, 1]] |
---|
249 | return np.matrix(R) |
---|
250 | |
---|
251 | def transform_xyz(view, jitter, x, y, z): |
---|
252 | """ |
---|
253 | Send a set of (x,y,z) points through the jitter and view transforms. |
---|
254 | """ |
---|
255 | x, y, z = [np.asarray(v) for v in (x, y, z)] |
---|
256 | shape = x.shape |
---|
257 | points = np.matrix([x.flatten(),y.flatten(),z.flatten()]) |
---|
258 | points = apply_jitter(jitter, points) |
---|
259 | points = orient_relative_to_beam(view, points) |
---|
260 | x, y, z = [np.array(v).reshape(shape) for v in points] |
---|
261 | return x, y, z |
---|
262 | |
---|
263 | def apply_jitter(jitter, points): |
---|
264 | """ |
---|
265 | Apply the jitter transform to a set of points. |
---|
266 | |
---|
267 | Points are stored in a 3 x n numpy matrix, not a numpy array or tuple. |
---|
268 | """ |
---|
269 | dtheta, dphi, dpsi = jitter |
---|
270 | points = Rx(dphi)*Ry(dtheta)*Rz(dpsi)*points |
---|
271 | return points |
---|
272 | |
---|
273 | def orient_relative_to_beam(view, points): |
---|
274 | """ |
---|
275 | Apply the view transform to a set of points. |
---|
276 | |
---|
277 | Points are stored in a 3 x n numpy matrix, not a numpy array or tuple. |
---|
278 | """ |
---|
279 | theta, phi, psi = view |
---|
280 | points = Rz(phi)*Ry(theta)*Rz(psi)*points |
---|
281 | return points |
---|
282 | |
---|
283 | # translate between number of dimension of dispersity and the number of |
---|
284 | # points along each dimension. |
---|
285 | PD_N_TABLE = { |
---|
286 | (0, 0, 0): (0, 0, 0), # 0 |
---|
287 | (1, 0, 0): (100, 0, 0), # 100 |
---|
288 | (0, 1, 0): (0, 100, 0), |
---|
289 | (0, 0, 1): (0, 0, 100), |
---|
290 | (1, 1, 0): (30, 30, 0), # 900 |
---|
291 | (1, 0, 1): (30, 0, 30), |
---|
292 | (0, 1, 1): (0, 30, 30), |
---|
293 | (1, 1, 1): (15, 15, 15), # 3375 |
---|
294 | } |
---|
295 | |
---|
296 | def clipped_range(data, portion=1.0, mode='central'): |
---|
297 | """ |
---|
298 | Determine range from data. |
---|
299 | |
---|
300 | If *portion* is 1, use full range, otherwise use the center of the range |
---|
301 | or the top of the range, depending on whether *mode* is 'central' or 'top'. |
---|
302 | """ |
---|
303 | if portion == 1.0: |
---|
304 | return data.min(), data.max() |
---|
305 | elif mode == 'central': |
---|
306 | data = np.sort(data.flatten()) |
---|
307 | offset = int(portion*len(data)/2 + 0.5) |
---|
308 | return data[offset], data[-offset] |
---|
309 | elif mode == 'top': |
---|
310 | data = np.sort(data.flatten()) |
---|
311 | offset = int(portion*len(data) + 0.5) |
---|
312 | return data[offset], data[-1] |
---|
313 | |
---|
314 | def draw_scattering(calculator, ax, view, jitter, dist='gaussian'): |
---|
315 | """ |
---|
316 | Plot the scattering for the particular view. |
---|
317 | |
---|
318 | *calculator* is returned from :func:`build_model`. *ax* are the 3D axes |
---|
319 | on which the data will be plotted. *view* and *jitter* are the current |
---|
320 | orientation and orientation dispersity. *dist* is one of the sasmodels |
---|
321 | weight distributions. |
---|
322 | """ |
---|
323 | ## Sasmodels use sqrt(3)*width for the rectangle range; scale to the |
---|
324 | ## proper width for comparison. Commented out since now using the |
---|
325 | ## sasmodels definition of width for rectangle. |
---|
326 | #scale = 1/sqrt(3) if dist == 'rectangle' else 1 |
---|
327 | scale = 1 |
---|
328 | |
---|
329 | # add the orientation parameters to the model parameters |
---|
330 | theta, phi, psi = view |
---|
331 | theta_pd, phi_pd, psi_pd = [scale*v for v in jitter] |
---|
332 | theta_pd_n, phi_pd_n, psi_pd_n = PD_N_TABLE[(theta_pd>0, phi_pd>0, psi_pd>0)] |
---|
333 | ## increase pd_n for testing jitter integration rather than simple viz |
---|
334 | #theta_pd_n, phi_pd_n, psi_pd_n = [5*v for v in (theta_pd_n, phi_pd_n, psi_pd_n)] |
---|
335 | |
---|
336 | pars = dict( |
---|
337 | theta=theta, theta_pd=theta_pd, theta_pd_type=dist, theta_pd_n=theta_pd_n, |
---|
338 | phi=phi, phi_pd=phi_pd, phi_pd_type=dist, phi_pd_n=phi_pd_n, |
---|
339 | psi=psi, psi_pd=psi_pd, psi_pd_type=dist, psi_pd_n=psi_pd_n, |
---|
340 | ) |
---|
341 | pars.update(calculator.pars) |
---|
342 | |
---|
343 | # compute the pattern |
---|
344 | qx, qy = calculator._data.x_bins, calculator._data.y_bins |
---|
345 | Iqxy = calculator(**pars).reshape(len(qx), len(qy)) |
---|
346 | |
---|
347 | # scale it and draw it |
---|
348 | Iqxy = np.log(Iqxy) |
---|
349 | if calculator.limits: |
---|
350 | # use limits from orientation (0,0,0) |
---|
351 | vmin, vmax = calculator.limits |
---|
352 | else: |
---|
353 | vmin, vmax = clipped_range(Iqxy, portion=0.95, mode='top') |
---|
354 | #print("range",(vmin,vmax)) |
---|
355 | #qx, qy = np.meshgrid(qx, qy) |
---|
356 | if 0: |
---|
357 | level = np.asarray(255*(Iqxy - vmin)/(vmax - vmin), 'i') |
---|
358 | level[level<0] = 0 |
---|
359 | colors = plt.get_cmap()(level) |
---|
360 | ax.plot_surface(qx, qy, -1.1, rstride=1, cstride=1, facecolors=colors) |
---|
361 | elif 1: |
---|
362 | ax.contourf(qx/qx.max(), qy/qy.max(), Iqxy, zdir='z', offset=-1.1, |
---|
363 | levels=np.linspace(vmin, vmax, 24)) |
---|
364 | else: |
---|
365 | ax.pcolormesh(qx, qy, Iqxy) |
---|
366 | |
---|
367 | def build_model(model_name, n=150, qmax=0.5, **pars): |
---|
368 | """ |
---|
369 | Build a calculator for the given shape. |
---|
370 | |
---|
371 | *model_name* is any sasmodels model. *n* and *qmax* define an n x n mesh |
---|
372 | on which to evaluate the model. The remaining parameters are stored in |
---|
373 | the returned calculator as *calculator.pars*. They are used by |
---|
374 | :func:`draw_scattering` to set the non-orientation parameters in the |
---|
375 | calculation. |
---|
376 | |
---|
377 | Returns a *calculator* function which takes a dictionary or parameters and |
---|
378 | produces Iqxy. The Iqxy value needs to be reshaped to an n x n matrix |
---|
379 | for plotting. See the :class:`sasmodels.direct_model.DirectModel` class |
---|
380 | for details. |
---|
381 | """ |
---|
382 | from sasmodels.core import load_model_info, build_model |
---|
383 | from sasmodels.data import empty_data2D |
---|
384 | from sasmodels.direct_model import DirectModel |
---|
385 | |
---|
386 | model_info = load_model_info(model_name) |
---|
387 | model = build_model(model_info) #, dtype='double!') |
---|
388 | q = np.linspace(-qmax, qmax, n) |
---|
389 | data = empty_data2D(q, q) |
---|
390 | calculator = DirectModel(data, model) |
---|
391 | |
---|
392 | # stuff the values for non-orientation parameters into the calculator |
---|
393 | calculator.pars = pars.copy() |
---|
394 | calculator.pars.setdefault('backgound', 1e-3) |
---|
395 | |
---|
396 | # fix the data limits so that we can see if the pattern fades |
---|
397 | # under rotation or angular dispersion |
---|
398 | Iqxy = calculator(theta=0, phi=0, psi=0, **calculator.pars) |
---|
399 | Iqxy = np.log(Iqxy) |
---|
400 | vmin, vmax = clipped_range(Iqxy, 0.95, mode='top') |
---|
401 | calculator.limits = vmin, vmax+1 |
---|
402 | |
---|
403 | return calculator |
---|
404 | |
---|
405 | def select_calculator(model_name, n=150, size=(10,40,100)): |
---|
406 | """ |
---|
407 | Create a model calculator for the given shape. |
---|
408 | |
---|
409 | *model_name* is one of sphere, cylinder, ellipsoid, triaxial_ellipsoid, |
---|
410 | parallelepiped or bcc_paracrystal. *n* is the number of points to use |
---|
411 | in the q range. *qmax* is chosen based on model parameters for the |
---|
412 | given model to show something intersting. |
---|
413 | |
---|
414 | Returns *calculator* and tuple *size* (a,b,c) giving minor and major |
---|
415 | equitorial axes and polar axis respectively. See :func:`build_model` |
---|
416 | for details on the returned calculator. |
---|
417 | """ |
---|
418 | a, b, c = size |
---|
419 | if model_name == 'sphere': |
---|
420 | calculator = build_model('sphere', n=n, radius=c) |
---|
421 | a = b = c |
---|
422 | elif model_name == 'bcc_paracrystal': |
---|
423 | calculator = build_model('bcc_paracrystal', n=n, dnn=c, |
---|
424 | d_factor=0.06, radius=40) |
---|
425 | a = b = c |
---|
426 | elif model_name == 'cylinder': |
---|
427 | calculator = build_model('cylinder', n=n, qmax=0.3, radius=b, length=c) |
---|
428 | a = b |
---|
429 | elif model_name == 'ellipsoid': |
---|
430 | calculator = build_model('ellipsoid', n=n, qmax=1.0, |
---|
431 | radius_polar=c, radius_equatorial=b) |
---|
432 | a = b |
---|
433 | elif model_name == 'triaxial_ellipsoid': |
---|
434 | calculator = build_model('triaxial_ellipsoid', n=n, qmax=0.5, |
---|
435 | radius_equat_minor=a, |
---|
436 | radius_equat_major=b, |
---|
437 | radius_polar=c) |
---|
438 | elif model_name == 'parallelepiped': |
---|
439 | calculator = build_model('parallelepiped', n=n, a=a, b=b, c=c) |
---|
440 | else: |
---|
441 | raise ValueError("unknown model %s"%model_name) |
---|
442 | |
---|
443 | return calculator, (a, b, c) |
---|
444 | |
---|
445 | def main(model_name='parallelepiped', size=(10, 40, 100)): |
---|
446 | """ |
---|
447 | Show an interactive orientation and jitter demo. |
---|
448 | |
---|
449 | *model_name* is one of the models available in :func:`select_model`. |
---|
450 | """ |
---|
451 | # set up calculator |
---|
452 | calculator, size = select_calculator(model_name, n=150, size=size) |
---|
453 | |
---|
454 | ## uncomment to set an independent the colour range for every view |
---|
455 | ## If left commented, the colour range is fixed for all views |
---|
456 | calculator.limits = None |
---|
457 | |
---|
458 | ## use gaussian distribution unless testing integration |
---|
459 | #dist = 'rectangle' |
---|
460 | dist = 'gaussian' |
---|
461 | |
---|
462 | ## initial view |
---|
463 | #theta, dtheta = 70., 10. |
---|
464 | #phi, dphi = -45., 3. |
---|
465 | #psi, dpsi = -45., 3. |
---|
466 | theta, phi, psi = 0, 0, 0 |
---|
467 | dtheta, dphi, dpsi = 0, 0, 0 |
---|
468 | |
---|
469 | ## create the plot window |
---|
470 | #plt.hold(True) |
---|
471 | plt.set_cmap('gist_earth') |
---|
472 | plt.clf() |
---|
473 | #gs = gridspec.GridSpec(2,1,height_ratios=[4,1]) |
---|
474 | #ax = plt.subplot(gs[0], projection='3d') |
---|
475 | ax = plt.axes([0.0, 0.2, 1.0, 0.8], projection='3d') |
---|
476 | try: # CRUFT: not all versions of matplotlib accept 'square' 3d projection |
---|
477 | ax.axis('square') |
---|
478 | except Exception: |
---|
479 | pass |
---|
480 | |
---|
481 | axcolor = 'lightgoldenrodyellow' |
---|
482 | |
---|
483 | ## add control widgets to plot |
---|
484 | axtheta = plt.axes([0.1, 0.15, 0.45, 0.04], axisbg=axcolor) |
---|
485 | axphi = plt.axes([0.1, 0.1, 0.45, 0.04], axisbg=axcolor) |
---|
486 | axpsi = plt.axes([0.1, 0.05, 0.45, 0.04], axisbg=axcolor) |
---|
487 | stheta = Slider(axtheta, 'Theta', -90, 90, valinit=theta) |
---|
488 | sphi = Slider(axphi, 'Phi', -180, 180, valinit=phi) |
---|
489 | spsi = Slider(axpsi, 'Psi', -180, 180, valinit=psi) |
---|
490 | |
---|
491 | axdtheta = plt.axes([0.75, 0.15, 0.15, 0.04], axisbg=axcolor) |
---|
492 | axdphi = plt.axes([0.75, 0.1, 0.15, 0.04], axisbg=axcolor) |
---|
493 | axdpsi= plt.axes([0.75, 0.05, 0.15, 0.04], axisbg=axcolor) |
---|
494 | # Note: using ridiculous definition of rectangle distribution, whose width |
---|
495 | # in sasmodels is sqrt(3) times the given width. Divide by sqrt(3) to keep |
---|
496 | # the maximum width to 90. |
---|
497 | dlimit = 30 if dist == 'gaussian' else 90/sqrt(3) |
---|
498 | sdtheta = Slider(axdtheta, 'dTheta', 0, 2*dlimit, valinit=dtheta) |
---|
499 | sdphi = Slider(axdphi, 'dPhi', 0, 2*dlimit, valinit=dphi) |
---|
500 | sdpsi = Slider(axdpsi, 'dPsi', 0, 2*dlimit, valinit=dpsi) |
---|
501 | |
---|
502 | ## callback to draw the new view |
---|
503 | def update(val, axis=None): |
---|
504 | view = stheta.val, sphi.val, spsi.val |
---|
505 | jitter = sdtheta.val, sdphi.val, sdpsi.val |
---|
506 | # set small jitter as 0 if multiple pd dims |
---|
507 | dims = sum(v > 0 for v in jitter) |
---|
508 | limit = [0, 0, 2, 5][dims] |
---|
509 | jitter = [0 if v < limit else v for v in jitter] |
---|
510 | ax.cla() |
---|
511 | draw_beam(ax, (0, 0)) |
---|
512 | draw_jitter(ax, view, jitter, dist=dist, size=size) |
---|
513 | #draw_jitter(ax, view, (0,0,0)) |
---|
514 | draw_mesh(ax, view, jitter, dist=dist, n=30) |
---|
515 | draw_scattering(calculator, ax, view, jitter, dist=dist) |
---|
516 | plt.gcf().canvas.draw() |
---|
517 | |
---|
518 | ## bind control widgets to view updater |
---|
519 | stheta.on_changed(lambda v: update(v,'theta')) |
---|
520 | sphi.on_changed(lambda v: update(v, 'phi')) |
---|
521 | spsi.on_changed(lambda v: update(v, 'psi')) |
---|
522 | sdtheta.on_changed(lambda v: update(v, 'dtheta')) |
---|
523 | sdphi.on_changed(lambda v: update(v, 'dphi')) |
---|
524 | sdpsi.on_changed(lambda v: update(v, 'dpsi')) |
---|
525 | |
---|
526 | ## initialize view |
---|
527 | update(None, 'phi') |
---|
528 | |
---|
529 | ## go interactive |
---|
530 | plt.show() |
---|
531 | |
---|
532 | if __name__ == "__main__": |
---|
533 | model_name = sys.argv[1] if len(sys.argv) > 1 else 'parallelepiped' |
---|
534 | size = tuple(int(v) for v in sys.argv[2].split(',')) if len(sys.argv) > 2 else (10, 40, 100) |
---|
535 | main(model_name, size) |
---|