[aa6989b] | 1 | #!/usr/bin/env python |
---|
[782dd1f] | 2 | """ |
---|
| 3 | Application to explore the difference between sasview 3.x orientation |
---|
| 4 | dispersity and possible replacement algorithms. |
---|
| 5 | """ |
---|
[aa6989b] | 6 | from __future__ import division, print_function |
---|
| 7 | |
---|
| 8 | import sys, os |
---|
| 9 | sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) |
---|
[8678a34] | 10 | |
---|
[782dd1f] | 11 | import mpl_toolkits.mplot3d # Adds projection='3d' option to subplot |
---|
| 12 | import matplotlib.pyplot as plt |
---|
| 13 | from matplotlib.widgets import Slider, CheckButtons |
---|
| 14 | from matplotlib import cm |
---|
| 15 | import numpy as np |
---|
| 16 | from numpy import pi, cos, sin, sqrt, exp, degrees, radians |
---|
| 17 | |
---|
[8678a34] | 18 | def draw_beam(ax, view=(0, 0)): |
---|
[aa6989b] | 19 | """ |
---|
| 20 | Draw the beam going from source at (0, 0, 1) to detector at (0, 0, -1) |
---|
| 21 | """ |
---|
[782dd1f] | 22 | #ax.plot([0,0],[0,0],[1,-1]) |
---|
| 23 | #ax.scatter([0]*100,[0]*100,np.linspace(1, -1, 100), alpha=0.8) |
---|
| 24 | |
---|
| 25 | steps = 25 |
---|
| 26 | u = np.linspace(0, 2 * np.pi, steps) |
---|
| 27 | v = np.linspace(-1, 1, steps) |
---|
| 28 | |
---|
| 29 | r = 0.02 |
---|
| 30 | x = r*np.outer(np.cos(u), np.ones_like(v)) |
---|
| 31 | y = r*np.outer(np.sin(u), np.ones_like(v)) |
---|
[8678a34] | 32 | z = 1.3*np.outer(np.ones_like(u), v) |
---|
| 33 | |
---|
| 34 | theta, phi = view |
---|
| 35 | shape = x.shape |
---|
| 36 | points = np.matrix([x.flatten(), y.flatten(), z.flatten()]) |
---|
| 37 | points = Rz(phi)*Ry(theta)*points |
---|
| 38 | x, y, z = [v.reshape(shape) for v in points] |
---|
[782dd1f] | 39 | |
---|
| 40 | ax.plot_surface(x, y, z, rstride=4, cstride=4, color='y', alpha=0.5) |
---|
[85190c2] | 41 | |
---|
[aa6989b] | 42 | def draw_jitter(ax, view, jitter, dist='gaussian', size=(0.1, 0.4, 1.0)): |
---|
| 43 | """ |
---|
| 44 | Represent jitter as a set of shapes at different orientations. |
---|
| 45 | """ |
---|
| 46 | # set max diagonal to 0.95 |
---|
| 47 | scale = 0.95/sqrt(sum(v**2 for v in size)) |
---|
| 48 | size = tuple(scale*v for v in size) |
---|
[8678a34] | 49 | draw_shape = draw_parallelepiped |
---|
| 50 | #draw_shape = draw_ellipsoid |
---|
[85190c2] | 51 | |
---|
[782dd1f] | 52 | #np.random.seed(10) |
---|
[85190c2] | 53 | #cloud = np.random.randn(10,3) |
---|
[782dd1f] | 54 | cloud = [ |
---|
| 55 | [-1, -1, -1], |
---|
| 56 | [-1, -1, 0], |
---|
| 57 | [-1, -1, 1], |
---|
| 58 | [-1, 0, -1], |
---|
| 59 | [-1, 0, 0], |
---|
| 60 | [-1, 0, 1], |
---|
| 61 | [-1, 1, -1], |
---|
| 62 | [-1, 1, 0], |
---|
| 63 | [-1, 1, 1], |
---|
| 64 | [ 0, -1, -1], |
---|
| 65 | [ 0, -1, 0], |
---|
| 66 | [ 0, -1, 1], |
---|
| 67 | [ 0, 0, -1], |
---|
| 68 | [ 0, 0, 0], |
---|
| 69 | [ 0, 0, 1], |
---|
| 70 | [ 0, 1, -1], |
---|
| 71 | [ 0, 1, 0], |
---|
| 72 | [ 0, 1, 1], |
---|
| 73 | [ 1, -1, -1], |
---|
| 74 | [ 1, -1, 0], |
---|
| 75 | [ 1, -1, 1], |
---|
| 76 | [ 1, 0, -1], |
---|
| 77 | [ 1, 0, 0], |
---|
| 78 | [ 1, 0, 1], |
---|
| 79 | [ 1, 1, -1], |
---|
| 80 | [ 1, 1, 0], |
---|
| 81 | [ 1, 1, 1], |
---|
| 82 | ] |
---|
[8678a34] | 83 | dtheta, dphi, dpsi = jitter |
---|
[1b693ba] | 84 | if dtheta == 0: |
---|
| 85 | cloud = [v for v in cloud if v[0] == 0] |
---|
| 86 | if dphi == 0: |
---|
| 87 | cloud = [v for v in cloud if v[1] == 0] |
---|
| 88 | if dpsi == 0: |
---|
| 89 | cloud = [v for v in cloud if v[2] == 0] |
---|
[8678a34] | 90 | draw_shape(ax, size, view, [0, 0, 0], steps=100, alpha=0.8) |
---|
[aa6989b] | 91 | scale = 1/sqrt(3) if dist == 'rectangle' else 1 |
---|
[782dd1f] | 92 | for point in cloud: |
---|
[aa6989b] | 93 | delta = [scale*dtheta*point[0], scale*dphi*point[1], scale*dpsi*point[2]] |
---|
[8678a34] | 94 | draw_shape(ax, size, view, delta, alpha=0.8) |
---|
[782dd1f] | 95 | for v in 'xyz': |
---|
| 96 | a, b, c = size |
---|
| 97 | lim = np.sqrt(a**2+b**2+c**2) |
---|
| 98 | getattr(ax, 'set_'+v+'lim')([-lim, lim]) |
---|
| 99 | getattr(ax, v+'axis').label.set_text(v) |
---|
| 100 | |
---|
[8678a34] | 101 | def draw_ellipsoid(ax, size, view, jitter, steps=25, alpha=1): |
---|
[aa6989b] | 102 | """Draw an ellipsoid.""" |
---|
[782dd1f] | 103 | a,b,c = size |
---|
| 104 | u = np.linspace(0, 2 * np.pi, steps) |
---|
| 105 | v = np.linspace(0, np.pi, steps) |
---|
| 106 | x = a*np.outer(np.cos(u), np.sin(v)) |
---|
| 107 | y = b*np.outer(np.sin(u), np.sin(v)) |
---|
| 108 | z = c*np.outer(np.ones_like(u), np.cos(v)) |
---|
[8678a34] | 109 | x, y, z = transform_xyz(view, jitter, x, y, z) |
---|
[782dd1f] | 110 | |
---|
| 111 | ax.plot_surface(x, y, z, rstride=4, cstride=4, color='w', alpha=alpha) |
---|
| 112 | |
---|
[8678a34] | 113 | draw_labels(ax, view, jitter, [ |
---|
| 114 | ('c+', [ 0, 0, c], [ 1, 0, 0]), |
---|
| 115 | ('c-', [ 0, 0,-c], [ 0, 0,-1]), |
---|
| 116 | ('a+', [ a, 0, 0], [ 0, 0, 1]), |
---|
| 117 | ('a-', [-a, 0, 0], [ 0, 0,-1]), |
---|
| 118 | ('b+', [ 0, b, 0], [-1, 0, 0]), |
---|
| 119 | ('b-', [ 0,-b, 0], [-1, 0, 0]), |
---|
| 120 | ]) |
---|
[782dd1f] | 121 | |
---|
[8678a34] | 122 | def draw_parallelepiped(ax, size, view, jitter, steps=None, alpha=1): |
---|
[aa6989b] | 123 | """Draw a parallelepiped.""" |
---|
[8678a34] | 124 | a,b,c = size |
---|
[782dd1f] | 125 | x = a*np.array([ 1,-1, 1,-1, 1,-1, 1,-1]) |
---|
| 126 | y = b*np.array([ 1, 1,-1,-1, 1, 1,-1,-1]) |
---|
| 127 | z = c*np.array([ 1, 1, 1, 1,-1,-1,-1,-1]) |
---|
| 128 | tri = np.array([ |
---|
| 129 | # counter clockwise triangles |
---|
| 130 | # z: up/down, x: right/left, y: front/back |
---|
| 131 | [0,1,2], [3,2,1], # top face |
---|
| 132 | [6,5,4], [5,6,7], # bottom face |
---|
| 133 | [0,2,6], [6,4,0], # right face |
---|
| 134 | [1,5,7], [7,3,1], # left face |
---|
| 135 | [2,3,6], [7,6,3], # front face |
---|
| 136 | [4,1,0], [5,1,4], # back face |
---|
| 137 | ]) |
---|
| 138 | |
---|
[8678a34] | 139 | x, y, z = transform_xyz(view, jitter, x, y, z) |
---|
[782dd1f] | 140 | ax.plot_trisurf(x, y, triangles=tri, Z=z, color='w', alpha=alpha) |
---|
| 141 | |
---|
[8678a34] | 142 | draw_labels(ax, view, jitter, [ |
---|
| 143 | ('c+', [ 0, 0, c], [ 1, 0, 0]), |
---|
| 144 | ('c-', [ 0, 0,-c], [ 0, 0,-1]), |
---|
| 145 | ('a+', [ a, 0, 0], [ 0, 0, 1]), |
---|
| 146 | ('a-', [-a, 0, 0], [ 0, 0,-1]), |
---|
| 147 | ('b+', [ 0, b, 0], [-1, 0, 0]), |
---|
| 148 | ('b-', [ 0,-b, 0], [-1, 0, 0]), |
---|
| 149 | ]) |
---|
[782dd1f] | 150 | |
---|
[aa6989b] | 151 | def draw_sphere(ax, radius=10., steps=100): |
---|
| 152 | """Draw a sphere""" |
---|
| 153 | u = np.linspace(0, 2 * np.pi, steps) |
---|
| 154 | v = np.linspace(0, np.pi, steps) |
---|
| 155 | |
---|
| 156 | x = radius * np.outer(np.cos(u), np.sin(v)) |
---|
| 157 | y = radius * np.outer(np.sin(u), np.sin(v)) |
---|
| 158 | z = radius * np.outer(np.ones(np.size(u)), np.cos(v)) |
---|
| 159 | ax.plot_surface(x, y, z, rstride=4, cstride=4, color='w') |
---|
| 160 | |
---|
| 161 | def draw_mesh(ax, view, jitter, radius=1.2, n=11, dist='gaussian'): |
---|
| 162 | """ |
---|
| 163 | Draw the dispersion mesh showing the theta-phi orientations at which |
---|
| 164 | the model will be evaluated. |
---|
| 165 | """ |
---|
[8678a34] | 166 | theta, phi, psi = view |
---|
| 167 | dtheta, dphi, dpsi = jitter |
---|
[aa6989b] | 168 | |
---|
| 169 | if dist == 'gaussian': |
---|
[8678a34] | 170 | t = np.linspace(-3, 3, n) |
---|
[782dd1f] | 171 | weights = exp(-0.5*t**2) |
---|
[aa6989b] | 172 | elif dist == 'rectangle': |
---|
| 173 | # Note: uses sasmodels ridiculous definition of rectangle width |
---|
| 174 | t = np.linspace(-1, 1, n)*sqrt(3) |
---|
[782dd1f] | 175 | weights = np.ones_like(t) |
---|
| 176 | else: |
---|
[aa6989b] | 177 | raise ValueError("expected dist to be 'gaussian' or 'rectangle'") |
---|
[782dd1f] | 178 | |
---|
[87a6591] | 179 | #PROJECTION = 'stretched_phi' |
---|
| 180 | PROJECTION = 'azimuthal_equidistance' |
---|
| 181 | #PROJECTION = 'azimuthal_equal_area' |
---|
| 182 | if PROJECTION == 'stretced_phi': |
---|
| 183 | def rotate(theta_i, phi_j): |
---|
| 184 | if theta_i != 90: |
---|
| 185 | phi_j /= cos(radians(theta_i)) |
---|
| 186 | return Rx(phi_j)*Ry(theta_i) |
---|
| 187 | def weight(theta_i, phi_j, wi, wj): |
---|
| 188 | if theta_i != 90: |
---|
| 189 | phi_j /= cos(radians(theta_i)) |
---|
| 190 | return wi*wj if abs(phi_j) < 180 else 0 |
---|
| 191 | elif PROJECTION == 'azimuthal_equidistance': |
---|
| 192 | # https://en.wikipedia.org/wiki/Azimuthal_equidistant_projection |
---|
| 193 | def rotate(theta_i, phi_j): |
---|
| 194 | latitude = sqrt(theta_i**2 + phi_j**2) |
---|
| 195 | longitude = degrees(np.arctan2(phi_j, theta_i)) |
---|
| 196 | #print("(%+7.2f, %+7.2f) => (%+7.2f, %+7.2f)"%(theta_i, phi_j, latitude, longitude)) |
---|
| 197 | return Rz(longitude)*Ry(latitude) |
---|
| 198 | def weight(theta_i, phi_j, wi, wj): |
---|
| 199 | latitude = sqrt(theta_i**2 + phi_j**2) |
---|
| 200 | w = wi*wj if latitude < 180 else 0 |
---|
| 201 | return w |
---|
| 202 | elif PROJECTION == 'azimuthal_equal_area': |
---|
| 203 | # https://en.wikipedia.org/wiki/Lambert_azimuthal_equal-area_projection |
---|
| 204 | def rotate(theta_i, phi_j): |
---|
| 205 | R = min(1, sqrt(theta_i**2 + phi_j**2)/180) |
---|
| 206 | latitude = 180-degrees(2*np.arccos(R)) |
---|
| 207 | longitude = degrees(np.arctan2(phi_j, theta_i)) |
---|
| 208 | #print("(%+7.2f, %+7.2f) => (%+7.2f, %+7.2f)"%(theta_i, phi_j, latitude, longitude)) |
---|
| 209 | return Rz(longitude)*Ry(latitude) |
---|
| 210 | def weight(theta_i, phi_j, wi, wj): |
---|
| 211 | R = sqrt(theta_i**2 + phi_j**2) |
---|
| 212 | return wi*wj if R <= 180 else 0 |
---|
| 213 | #return wi*wj if latitude <= 180 else 0 |
---|
| 214 | elif SCALED_PHI == 10: # random thrashing |
---|
| 215 | def rotate(theta_i, phi_j): |
---|
| 216 | theta_i, phi_j = 2*theta_i/abs(cos(radians(phi_j))), 2*phi_j/cos(radians(theta_i)) |
---|
| 217 | return Rx(phi_j)*Ry(theta_i) |
---|
| 218 | def weight(theta_i, phi_j, wi, wj): |
---|
| 219 | theta_i, phi_j = 2*theta_i/abs(cos(radians(phi_j))), 2*phi_j/cos(radians(theta_i)) |
---|
| 220 | return wi*wj if abs(phi_j) < 180 else 0 |
---|
[b9578fc] | 221 | else: |
---|
[87a6591] | 222 | def rotate(theta_i, phi_j): |
---|
| 223 | return Rx(phi_j)*Ry(theta_i) |
---|
| 224 | def weight(theta_i, phi_j, wi, wj): |
---|
| 225 | return wi*wj*cos(radians(theta_i)) |
---|
[b9578fc] | 226 | |
---|
[8678a34] | 227 | # mesh in theta, phi formed by rotating z |
---|
| 228 | z = np.matrix([[0], [0], [radius]]) |
---|
[87a6591] | 229 | points = np.hstack([rotate(theta_i, phi_j)*z |
---|
[8678a34] | 230 | for theta_i in dtheta*t |
---|
[b9578fc] | 231 | for phi_j in dphi*t]) |
---|
| 232 | # select just the active points (i.e., those with phi < 180 |
---|
[87a6591] | 233 | w = np.array([weight(theta_i, phi_j, wi, wj) |
---|
| 234 | for wi, theta_i in zip(weights, dtheta*t) |
---|
| 235 | for wj, phi_j in zip(weights, dphi*t)]) |
---|
| 236 | points = points[:, w>0] |
---|
| 237 | w = w[w>0] |
---|
| 238 | |
---|
| 239 | if 0: # Kent distribution |
---|
| 240 | points = np.hstack([Rx(phi_j)*Ry(theta_i)*z for theta_i in 30*t for phi_j in 60*t]) |
---|
| 241 | xp, yp, zp = [np.array(v).flatten() for v in points] |
---|
| 242 | kappa = max(1e6, radians(dtheta)/(2*pi)) |
---|
| 243 | beta = 1/max(1e-6, radians(dphi)/(2*pi))/kappa |
---|
| 244 | w = exp(kappa*zp) #+ beta*(xp**2 + yp**2) |
---|
| 245 | print(kappa, dtheta, radians(dtheta), min(w), max(w), sum(w)) |
---|
| 246 | #w /= abs(cos(radians( |
---|
| 247 | #w /= sum(w) |
---|
[b9578fc] | 248 | |
---|
[8678a34] | 249 | # rotate relative to beam |
---|
| 250 | points = orient_relative_to_beam(view, points) |
---|
[782dd1f] | 251 | |
---|
[8678a34] | 252 | x, y, z = [np.array(v).flatten() for v in points] |
---|
[87a6591] | 253 | #plt.figure(2); plt.clf(); plt.hist(z, bins=np.linspace(-1, 1, 51)) |
---|
[b9578fc] | 254 | ax.scatter(x, y, z, c=w, marker='o', vmin=0., vmax=1.) |
---|
[782dd1f] | 255 | |
---|
[aa6989b] | 256 | def draw_labels(ax, view, jitter, text): |
---|
| 257 | """ |
---|
| 258 | Draw text at a particular location. |
---|
| 259 | """ |
---|
| 260 | labels, locations, orientations = zip(*text) |
---|
| 261 | px, py, pz = zip(*locations) |
---|
| 262 | dx, dy, dz = zip(*orientations) |
---|
| 263 | |
---|
| 264 | px, py, pz = transform_xyz(view, jitter, px, py, pz) |
---|
| 265 | dx, dy, dz = transform_xyz(view, jitter, dx, dy, dz) |
---|
| 266 | |
---|
| 267 | # TODO: zdir for labels is broken, and labels aren't appearing. |
---|
| 268 | for label, p, zdir in zip(labels, zip(px, py, pz), zip(dx, dy, dz)): |
---|
| 269 | zdir = np.asarray(zdir).flatten() |
---|
| 270 | ax.text(p[0], p[1], p[2], label, zdir=zdir) |
---|
| 271 | |
---|
| 272 | # Definition of rotation matrices comes from wikipedia: |
---|
| 273 | # https://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations |
---|
[782dd1f] | 274 | def Rx(angle): |
---|
[aa6989b] | 275 | """Construct a matrix to rotate points about *x* by *angle* degrees.""" |
---|
[782dd1f] | 276 | a = radians(angle) |
---|
[aa6989b] | 277 | R = [[1, 0, 0], |
---|
| 278 | [0, +cos(a), -sin(a)], |
---|
| 279 | [0, +sin(a), +cos(a)]] |
---|
[782dd1f] | 280 | return np.matrix(R) |
---|
| 281 | |
---|
| 282 | def Ry(angle): |
---|
[aa6989b] | 283 | """Construct a matrix to rotate points about *y* by *angle* degrees.""" |
---|
[782dd1f] | 284 | a = radians(angle) |
---|
[aa6989b] | 285 | R = [[+cos(a), 0, +sin(a)], |
---|
| 286 | [0, 1, 0], |
---|
| 287 | [-sin(a), 0, +cos(a)]] |
---|
[782dd1f] | 288 | return np.matrix(R) |
---|
| 289 | |
---|
| 290 | def Rz(angle): |
---|
[aa6989b] | 291 | """Construct a matrix to rotate points about *z* by *angle* degrees.""" |
---|
[782dd1f] | 292 | a = radians(angle) |
---|
[aa6989b] | 293 | R = [[+cos(a), -sin(a), 0], |
---|
| 294 | [+sin(a), +cos(a), 0], |
---|
| 295 | [0, 0, 1]] |
---|
[782dd1f] | 296 | return np.matrix(R) |
---|
| 297 | |
---|
[8678a34] | 298 | def transform_xyz(view, jitter, x, y, z): |
---|
[aa6989b] | 299 | """ |
---|
| 300 | Send a set of (x,y,z) points through the jitter and view transforms. |
---|
| 301 | """ |
---|
[8678a34] | 302 | x, y, z = [np.asarray(v) for v in (x, y, z)] |
---|
| 303 | shape = x.shape |
---|
| 304 | points = np.matrix([x.flatten(),y.flatten(),z.flatten()]) |
---|
| 305 | points = apply_jitter(jitter, points) |
---|
| 306 | points = orient_relative_to_beam(view, points) |
---|
| 307 | x, y, z = [np.array(v).reshape(shape) for v in points] |
---|
| 308 | return x, y, z |
---|
| 309 | |
---|
| 310 | def apply_jitter(jitter, points): |
---|
[aa6989b] | 311 | """ |
---|
| 312 | Apply the jitter transform to a set of points. |
---|
| 313 | |
---|
| 314 | Points are stored in a 3 x n numpy matrix, not a numpy array or tuple. |
---|
| 315 | """ |
---|
[8678a34] | 316 | dtheta, dphi, dpsi = jitter |
---|
[d4c33d6] | 317 | points = Rx(dphi)*Ry(dtheta)*Rz(dpsi)*points |
---|
[8678a34] | 318 | return points |
---|
| 319 | |
---|
| 320 | def orient_relative_to_beam(view, points): |
---|
[aa6989b] | 321 | """ |
---|
| 322 | Apply the view transform to a set of points. |
---|
| 323 | |
---|
| 324 | Points are stored in a 3 x n numpy matrix, not a numpy array or tuple. |
---|
| 325 | """ |
---|
[8678a34] | 326 | theta, phi, psi = view |
---|
| 327 | points = Rz(phi)*Ry(theta)*Rz(psi)*points |
---|
| 328 | return points |
---|
| 329 | |
---|
[aa6989b] | 330 | # translate between number of dimension of dispersity and the number of |
---|
| 331 | # points along each dimension. |
---|
| 332 | PD_N_TABLE = { |
---|
| 333 | (0, 0, 0): (0, 0, 0), # 0 |
---|
| 334 | (1, 0, 0): (100, 0, 0), # 100 |
---|
| 335 | (0, 1, 0): (0, 100, 0), |
---|
| 336 | (0, 0, 1): (0, 0, 100), |
---|
| 337 | (1, 1, 0): (30, 30, 0), # 900 |
---|
| 338 | (1, 0, 1): (30, 0, 30), |
---|
| 339 | (0, 1, 1): (0, 30, 30), |
---|
| 340 | (1, 1, 1): (15, 15, 15), # 3375 |
---|
| 341 | } |
---|
| 342 | |
---|
| 343 | def clipped_range(data, portion=1.0, mode='central'): |
---|
| 344 | """ |
---|
| 345 | Determine range from data. |
---|
| 346 | |
---|
| 347 | If *portion* is 1, use full range, otherwise use the center of the range |
---|
| 348 | or the top of the range, depending on whether *mode* is 'central' or 'top'. |
---|
| 349 | """ |
---|
| 350 | if portion == 1.0: |
---|
| 351 | return data.min(), data.max() |
---|
| 352 | elif mode == 'central': |
---|
| 353 | data = np.sort(data.flatten()) |
---|
| 354 | offset = int(portion*len(data)/2 + 0.5) |
---|
| 355 | return data[offset], data[-offset] |
---|
| 356 | elif mode == 'top': |
---|
| 357 | data = np.sort(data.flatten()) |
---|
| 358 | offset = int(portion*len(data) + 0.5) |
---|
| 359 | return data[offset], data[-1] |
---|
| 360 | |
---|
| 361 | def draw_scattering(calculator, ax, view, jitter, dist='gaussian'): |
---|
| 362 | """ |
---|
| 363 | Plot the scattering for the particular view. |
---|
| 364 | |
---|
| 365 | *calculator* is returned from :func:`build_model`. *ax* are the 3D axes |
---|
| 366 | on which the data will be plotted. *view* and *jitter* are the current |
---|
| 367 | orientation and orientation dispersity. *dist* is one of the sasmodels |
---|
| 368 | weight distributions. |
---|
| 369 | """ |
---|
| 370 | ## Sasmodels use sqrt(3)*width for the rectangle range; scale to the |
---|
| 371 | ## proper width for comparison. Commented out since now using the |
---|
| 372 | ## sasmodels definition of width for rectangle. |
---|
| 373 | #scale = 1/sqrt(3) if dist == 'rectangle' else 1 |
---|
| 374 | scale = 1 |
---|
| 375 | |
---|
| 376 | # add the orientation parameters to the model parameters |
---|
| 377 | theta, phi, psi = view |
---|
| 378 | theta_pd, phi_pd, psi_pd = [scale*v for v in jitter] |
---|
| 379 | theta_pd_n, phi_pd_n, psi_pd_n = PD_N_TABLE[(theta_pd>0, phi_pd>0, psi_pd>0)] |
---|
| 380 | ## increase pd_n for testing jitter integration rather than simple viz |
---|
| 381 | #theta_pd_n, phi_pd_n, psi_pd_n = [5*v for v in (theta_pd_n, phi_pd_n, psi_pd_n)] |
---|
| 382 | |
---|
| 383 | pars = dict( |
---|
| 384 | theta=theta, theta_pd=theta_pd, theta_pd_type=dist, theta_pd_n=theta_pd_n, |
---|
| 385 | phi=phi, phi_pd=phi_pd, phi_pd_type=dist, phi_pd_n=phi_pd_n, |
---|
| 386 | psi=psi, psi_pd=psi_pd, psi_pd_type=dist, psi_pd_n=psi_pd_n, |
---|
| 387 | ) |
---|
| 388 | pars.update(calculator.pars) |
---|
| 389 | |
---|
| 390 | # compute the pattern |
---|
| 391 | qx, qy = calculator._data.x_bins, calculator._data.y_bins |
---|
| 392 | Iqxy = calculator(**pars).reshape(len(qx), len(qy)) |
---|
| 393 | |
---|
| 394 | # scale it and draw it |
---|
| 395 | Iqxy = np.log(Iqxy) |
---|
| 396 | if calculator.limits: |
---|
| 397 | # use limits from orientation (0,0,0) |
---|
| 398 | vmin, vmax = calculator.limits |
---|
| 399 | else: |
---|
| 400 | vmin, vmax = clipped_range(Iqxy, portion=0.95, mode='top') |
---|
| 401 | #print("range",(vmin,vmax)) |
---|
| 402 | #qx, qy = np.meshgrid(qx, qy) |
---|
| 403 | if 0: |
---|
| 404 | level = np.asarray(255*(Iqxy - vmin)/(vmax - vmin), 'i') |
---|
| 405 | level[level<0] = 0 |
---|
| 406 | colors = plt.get_cmap()(level) |
---|
| 407 | ax.plot_surface(qx, qy, -1.1, rstride=1, cstride=1, facecolors=colors) |
---|
| 408 | elif 1: |
---|
| 409 | ax.contourf(qx/qx.max(), qy/qy.max(), Iqxy, zdir='z', offset=-1.1, |
---|
| 410 | levels=np.linspace(vmin, vmax, 24)) |
---|
| 411 | else: |
---|
| 412 | ax.pcolormesh(qx, qy, Iqxy) |
---|
| 413 | |
---|
| 414 | def build_model(model_name, n=150, qmax=0.5, **pars): |
---|
| 415 | """ |
---|
| 416 | Build a calculator for the given shape. |
---|
| 417 | |
---|
| 418 | *model_name* is any sasmodels model. *n* and *qmax* define an n x n mesh |
---|
| 419 | on which to evaluate the model. The remaining parameters are stored in |
---|
| 420 | the returned calculator as *calculator.pars*. They are used by |
---|
| 421 | :func:`draw_scattering` to set the non-orientation parameters in the |
---|
| 422 | calculation. |
---|
| 423 | |
---|
| 424 | Returns a *calculator* function which takes a dictionary or parameters and |
---|
| 425 | produces Iqxy. The Iqxy value needs to be reshaped to an n x n matrix |
---|
| 426 | for plotting. See the :class:`sasmodels.direct_model.DirectModel` class |
---|
| 427 | for details. |
---|
| 428 | """ |
---|
| 429 | from sasmodels.core import load_model_info, build_model |
---|
| 430 | from sasmodels.data import empty_data2D |
---|
| 431 | from sasmodels.direct_model import DirectModel |
---|
| 432 | |
---|
| 433 | model_info = load_model_info(model_name) |
---|
| 434 | model = build_model(model_info) #, dtype='double!') |
---|
| 435 | q = np.linspace(-qmax, qmax, n) |
---|
| 436 | data = empty_data2D(q, q) |
---|
| 437 | calculator = DirectModel(data, model) |
---|
| 438 | |
---|
| 439 | # stuff the values for non-orientation parameters into the calculator |
---|
| 440 | calculator.pars = pars.copy() |
---|
| 441 | calculator.pars.setdefault('backgound', 1e-3) |
---|
| 442 | |
---|
| 443 | # fix the data limits so that we can see if the pattern fades |
---|
| 444 | # under rotation or angular dispersion |
---|
| 445 | Iqxy = calculator(theta=0, phi=0, psi=0, **calculator.pars) |
---|
| 446 | Iqxy = np.log(Iqxy) |
---|
| 447 | vmin, vmax = clipped_range(Iqxy, 0.95, mode='top') |
---|
| 448 | calculator.limits = vmin, vmax+1 |
---|
| 449 | |
---|
| 450 | return calculator |
---|
| 451 | |
---|
[59e537a] | 452 | def select_calculator(model_name, n=150, size=(10,40,100)): |
---|
[aa6989b] | 453 | """ |
---|
| 454 | Create a model calculator for the given shape. |
---|
| 455 | |
---|
| 456 | *model_name* is one of sphere, cylinder, ellipsoid, triaxial_ellipsoid, |
---|
| 457 | parallelepiped or bcc_paracrystal. *n* is the number of points to use |
---|
| 458 | in the q range. *qmax* is chosen based on model parameters for the |
---|
| 459 | given model to show something intersting. |
---|
| 460 | |
---|
| 461 | Returns *calculator* and tuple *size* (a,b,c) giving minor and major |
---|
| 462 | equitorial axes and polar axis respectively. See :func:`build_model` |
---|
| 463 | for details on the returned calculator. |
---|
| 464 | """ |
---|
[59e537a] | 465 | a, b, c = size |
---|
[aa6989b] | 466 | if model_name == 'sphere': |
---|
| 467 | calculator = build_model('sphere', n=n, radius=c) |
---|
| 468 | a = b = c |
---|
| 469 | elif model_name == 'bcc_paracrystal': |
---|
| 470 | calculator = build_model('bcc_paracrystal', n=n, dnn=c, |
---|
| 471 | d_factor=0.06, radius=40) |
---|
| 472 | a = b = c |
---|
| 473 | elif model_name == 'cylinder': |
---|
| 474 | calculator = build_model('cylinder', n=n, qmax=0.3, radius=b, length=c) |
---|
| 475 | a = b |
---|
| 476 | elif model_name == 'ellipsoid': |
---|
| 477 | calculator = build_model('ellipsoid', n=n, qmax=1.0, |
---|
| 478 | radius_polar=c, radius_equatorial=b) |
---|
| 479 | a = b |
---|
| 480 | elif model_name == 'triaxial_ellipsoid': |
---|
| 481 | calculator = build_model('triaxial_ellipsoid', n=n, qmax=0.5, |
---|
| 482 | radius_equat_minor=a, |
---|
| 483 | radius_equat_major=b, |
---|
| 484 | radius_polar=c) |
---|
| 485 | elif model_name == 'parallelepiped': |
---|
| 486 | calculator = build_model('parallelepiped', n=n, a=a, b=b, c=c) |
---|
| 487 | else: |
---|
| 488 | raise ValueError("unknown model %s"%model_name) |
---|
[8678a34] | 489 | |
---|
[aa6989b] | 490 | return calculator, (a, b, c) |
---|
[8678a34] | 491 | |
---|
[59e537a] | 492 | def main(model_name='parallelepiped', size=(10, 40, 100)): |
---|
[aa6989b] | 493 | """ |
---|
| 494 | Show an interactive orientation and jitter demo. |
---|
[8678a34] | 495 | |
---|
[aa6989b] | 496 | *model_name* is one of the models available in :func:`select_model`. |
---|
| 497 | """ |
---|
| 498 | # set up calculator |
---|
[59e537a] | 499 | calculator, size = select_calculator(model_name, n=150, size=size) |
---|
[8678a34] | 500 | |
---|
[aa6989b] | 501 | ## uncomment to set an independent the colour range for every view |
---|
| 502 | ## If left commented, the colour range is fixed for all views |
---|
| 503 | calculator.limits = None |
---|
| 504 | |
---|
| 505 | ## use gaussian distribution unless testing integration |
---|
| 506 | #dist = 'rectangle' |
---|
| 507 | dist = 'gaussian' |
---|
[8678a34] | 508 | |
---|
[aa6989b] | 509 | ## initial view |
---|
| 510 | #theta, dtheta = 70., 10. |
---|
| 511 | #phi, dphi = -45., 3. |
---|
| 512 | #psi, dpsi = -45., 3. |
---|
| 513 | theta, phi, psi = 0, 0, 0 |
---|
| 514 | dtheta, dphi, dpsi = 0, 0, 0 |
---|
| 515 | |
---|
| 516 | ## create the plot window |
---|
[782dd1f] | 517 | #plt.hold(True) |
---|
| 518 | plt.set_cmap('gist_earth') |
---|
| 519 | plt.clf() |
---|
| 520 | #gs = gridspec.GridSpec(2,1,height_ratios=[4,1]) |
---|
| 521 | #ax = plt.subplot(gs[0], projection='3d') |
---|
| 522 | ax = plt.axes([0.0, 0.2, 1.0, 0.8], projection='3d') |
---|
[36b3154] | 523 | try: # CRUFT: not all versions of matplotlib accept 'square' 3d projection |
---|
| 524 | ax.axis('square') |
---|
| 525 | except Exception: |
---|
| 526 | pass |
---|
[782dd1f] | 527 | |
---|
| 528 | axcolor = 'lightgoldenrodyellow' |
---|
[8678a34] | 529 | |
---|
[aa6989b] | 530 | ## add control widgets to plot |
---|
[782dd1f] | 531 | axtheta = plt.axes([0.1, 0.15, 0.45, 0.04], axisbg=axcolor) |
---|
| 532 | axphi = plt.axes([0.1, 0.1, 0.45, 0.04], axisbg=axcolor) |
---|
| 533 | axpsi = plt.axes([0.1, 0.05, 0.45, 0.04], axisbg=axcolor) |
---|
[1b693ba] | 534 | stheta = Slider(axtheta, 'Theta', -90, 90, valinit=theta) |
---|
[782dd1f] | 535 | sphi = Slider(axphi, 'Phi', -180, 180, valinit=phi) |
---|
| 536 | spsi = Slider(axpsi, 'Psi', -180, 180, valinit=psi) |
---|
[8678a34] | 537 | |
---|
[782dd1f] | 538 | axdtheta = plt.axes([0.75, 0.15, 0.15, 0.04], axisbg=axcolor) |
---|
| 539 | axdphi = plt.axes([0.75, 0.1, 0.15, 0.04], axisbg=axcolor) |
---|
| 540 | axdpsi= plt.axes([0.75, 0.05, 0.15, 0.04], axisbg=axcolor) |
---|
[aa6989b] | 541 | # Note: using ridiculous definition of rectangle distribution, whose width |
---|
| 542 | # in sasmodels is sqrt(3) times the given width. Divide by sqrt(3) to keep |
---|
| 543 | # the maximum width to 90. |
---|
| 544 | dlimit = 30 if dist == 'gaussian' else 90/sqrt(3) |
---|
[0db85af] | 545 | sdtheta = Slider(axdtheta, 'dTheta', 0, 2*dlimit, valinit=dtheta) |
---|
[aa6989b] | 546 | sdphi = Slider(axdphi, 'dPhi', 0, 2*dlimit, valinit=dphi) |
---|
| 547 | sdpsi = Slider(axdpsi, 'dPsi', 0, 2*dlimit, valinit=dpsi) |
---|
| 548 | |
---|
| 549 | ## callback to draw the new view |
---|
[782dd1f] | 550 | def update(val, axis=None): |
---|
[8678a34] | 551 | view = stheta.val, sphi.val, spsi.val |
---|
| 552 | jitter = sdtheta.val, sdphi.val, sdpsi.val |
---|
[aa6989b] | 553 | # set small jitter as 0 if multiple pd dims |
---|
| 554 | dims = sum(v > 0 for v in jitter) |
---|
| 555 | limit = [0, 0, 2, 5][dims] |
---|
| 556 | jitter = [0 if v < limit else v for v in jitter] |
---|
[782dd1f] | 557 | ax.cla() |
---|
[8678a34] | 558 | draw_beam(ax, (0, 0)) |
---|
[aa6989b] | 559 | draw_jitter(ax, view, jitter, dist=dist, size=size) |
---|
[d4c33d6] | 560 | #draw_jitter(ax, view, (0,0,0)) |
---|
[0db85af] | 561 | draw_mesh(ax, view, jitter, dist=dist, n=30) |
---|
[aa6989b] | 562 | draw_scattering(calculator, ax, view, jitter, dist=dist) |
---|
[782dd1f] | 563 | plt.gcf().canvas.draw() |
---|
| 564 | |
---|
[aa6989b] | 565 | ## bind control widgets to view updater |
---|
[782dd1f] | 566 | stheta.on_changed(lambda v: update(v,'theta')) |
---|
| 567 | sphi.on_changed(lambda v: update(v, 'phi')) |
---|
| 568 | spsi.on_changed(lambda v: update(v, 'psi')) |
---|
| 569 | sdtheta.on_changed(lambda v: update(v, 'dtheta')) |
---|
| 570 | sdphi.on_changed(lambda v: update(v, 'dphi')) |
---|
| 571 | sdpsi.on_changed(lambda v: update(v, 'dpsi')) |
---|
| 572 | |
---|
[aa6989b] | 573 | ## initialize view |
---|
[782dd1f] | 574 | update(None, 'phi') |
---|
| 575 | |
---|
[aa6989b] | 576 | ## go interactive |
---|
[782dd1f] | 577 | plt.show() |
---|
| 578 | |
---|
| 579 | if __name__ == "__main__": |
---|
[aa6989b] | 580 | model_name = sys.argv[1] if len(sys.argv) > 1 else 'parallelepiped' |
---|
[59e537a] | 581 | size = tuple(int(v) for v in sys.argv[2].split(',')) if len(sys.argv) > 2 else (10, 40, 100) |
---|
| 582 | main(model_name, size) |
---|