1 | from __future__ import division, print_function |
---|
2 | # Make sasmodels available on the path |
---|
3 | import sys, os |
---|
4 | BETA_DIR = os.path.dirname(os.path.realpath(__file__)) |
---|
5 | SASMODELS_DIR = os.path.dirname(os.path.dirname(BETA_DIR)) |
---|
6 | sys.path.insert(0, SASMODELS_DIR) |
---|
7 | |
---|
8 | from collections import namedtuple |
---|
9 | |
---|
10 | from matplotlib import pyplot as plt |
---|
11 | import numpy as np |
---|
12 | from numpy import pi, sin, cos, sqrt, fabs |
---|
13 | from numpy.polynomial.legendre import leggauss |
---|
14 | from scipy.special import j1 as J1 |
---|
15 | from numpy import inf |
---|
16 | from scipy.special import gammaln # type: ignore |
---|
17 | |
---|
18 | Theory = namedtuple('Theory', 'Q F1 F2 P S I Seff Ibeta') |
---|
19 | Theory.__new__.__defaults__ = (None,) * len(Theory._fields) |
---|
20 | |
---|
21 | #Used to calculate F(q) for the cylinder, sphere, ellipsoid models |
---|
22 | # RKH adding vesicle and hollow_cylinder to test sasview special cases of ER and VR |
---|
23 | # BEWARE there are issues here if you run this from python3 (i.e. qt5 version of sasview), so do "source activate sasview" |
---|
24 | def sas_sinx_x(x): |
---|
25 | with np.errstate(all='ignore'): |
---|
26 | retvalue = sin(x)/x |
---|
27 | retvalue[x == 0.] = 1. |
---|
28 | return retvalue |
---|
29 | |
---|
30 | def sas_2J1x_x(x): |
---|
31 | with np.errstate(all='ignore'): |
---|
32 | retvalue = 2*J1(x)/x |
---|
33 | retvalue[x == 0] = 1. |
---|
34 | return retvalue |
---|
35 | |
---|
36 | def sas_3j1x_x(x): |
---|
37 | """return 3*j1(x)/x""" |
---|
38 | retvalue = np.empty_like(x) |
---|
39 | with np.errstate(all='ignore'): |
---|
40 | # GSL bessel_j1 taylor expansion |
---|
41 | index = (x < 0.25) |
---|
42 | y = x[index]**2 |
---|
43 | c1 = -1.0/10.0 |
---|
44 | c2 = +1.0/280.0 |
---|
45 | c3 = -1.0/15120.0 |
---|
46 | c4 = +1.0/1330560.0 |
---|
47 | c5 = -1.0/172972800.0 |
---|
48 | retvalue[index] = 1.0 + y*(c1 + y*(c2 + y*(c3 + y*(c4 + y*c5)))) |
---|
49 | index = ~index |
---|
50 | y = x[index] |
---|
51 | retvalue[index] = 3*(sin(y) - y*cos(y))/y**3 |
---|
52 | retvalue[x == 0.] = 1. |
---|
53 | return retvalue |
---|
54 | |
---|
55 | #Used to cross check my models with sasview models |
---|
56 | def build_model(model_name, q, **pars): |
---|
57 | from sasmodels.core import load_model_info, build_model as build_sasmodel |
---|
58 | from sasmodels.data import empty_data1D |
---|
59 | from sasmodels.direct_model import DirectModel |
---|
60 | model_info = load_model_info(model_name) |
---|
61 | model = build_sasmodel(model_info, dtype='double!') |
---|
62 | data = empty_data1D(q) |
---|
63 | calculator = DirectModel(data, model,cutoff=0) |
---|
64 | calculator.pars = pars.copy() |
---|
65 | calculator.pars.setdefault('background', 0) |
---|
66 | return calculator |
---|
67 | |
---|
68 | #gives the hardsphere structure factor that sasview uses |
---|
69 | def _hardsphere_simple(q, radius_effective, volfraction): |
---|
70 | CUTOFFHS = 0.05 |
---|
71 | if fabs(radius_effective) < 1.E-12: |
---|
72 | HARDSPH = 1.0 |
---|
73 | return HARDSPH |
---|
74 | X = 1.0/(1.0 -volfraction) |
---|
75 | D = X*X |
---|
76 | A = (1.+2.*volfraction)*D |
---|
77 | A *= A |
---|
78 | X = fabs(q*radius_effective*2.0) |
---|
79 | if X < 5.E-06: |
---|
80 | HARDSPH = 1./A |
---|
81 | return HARDSPH |
---|
82 | X2 = X*X |
---|
83 | B = (1.0 +0.5*volfraction)*D |
---|
84 | B *= B |
---|
85 | B *= -6.*volfraction |
---|
86 | G = 0.5*volfraction*A |
---|
87 | if X < CUTOFFHS: |
---|
88 | FF = 8.0*A +6.0*B + 4.0*G + ( -0.8*A -B/1.5 -0.5*G +(A/35. +0.0125*B +0.02*G)*X2)*X2 |
---|
89 | HARDSPH = 1./(1. + volfraction*FF ) |
---|
90 | return HARDSPH |
---|
91 | X4 = X2*X2 |
---|
92 | S, C = sin(X), cos(X) |
---|
93 | FF = ((G*( (4.*X2 -24.)*X*S -(X4 -12.*X2 +24.)*C +24. )/X2 + B*(2.*X*S -(X2-2.)*C -2.) )/X + A*(S-X*C))/X |
---|
94 | HARDSPH = 1./(1. + 24.*volfraction*FF/X2) |
---|
95 | return HARDSPH |
---|
96 | |
---|
97 | def hardsphere_simple(q, radius_effective, volfraction): |
---|
98 | SQ = [_hardsphere_simple(qk, radius_effective, volfraction) for qk in q] |
---|
99 | return np.array(SQ) |
---|
100 | |
---|
101 | #Used in gaussian quadrature for polydispersity |
---|
102 | #returns values and the probability of those values based on gaussian distribution |
---|
103 | N_GAUSS = 35 |
---|
104 | NSIGMA_GAUSS = 3 |
---|
105 | def gaussian_distribution(center, sigma, lb, ub): |
---|
106 | #3 standard deviations covers approx. 99.7% |
---|
107 | if sigma != 0: |
---|
108 | nsigmas = NSIGMA_GAUSS |
---|
109 | x = np.linspace(center-sigma*nsigmas, center+sigma*nsigmas, num=N_GAUSS) |
---|
110 | x = x[(x >= lb) & (x <= ub)] |
---|
111 | px = np.exp((x-center)**2 / (-2.0 * sigma * sigma)) |
---|
112 | return x, px |
---|
113 | else: |
---|
114 | return np.array([center]), np.array([1]) |
---|
115 | |
---|
116 | N_SCHULZ = 80 |
---|
117 | NSIGMA_SCHULZ = 8 |
---|
118 | def schulz_distribution(center, sigma, lb, ub): |
---|
119 | if sigma != 0: |
---|
120 | nsigmas = NSIGMA_SCHULZ |
---|
121 | x = np.linspace(center-sigma*nsigmas, center+sigma*nsigmas, num=N_SCHULZ) |
---|
122 | x = x[(x >= lb) & (x <= ub)] |
---|
123 | R = x/center |
---|
124 | z = (center/sigma)**2 |
---|
125 | arg = z*np.log(z) + (z-1)*np.log(R) - R*z - np.log(center) - gammaln(z) |
---|
126 | px = np.exp(arg) |
---|
127 | return x, px |
---|
128 | else: |
---|
129 | return np.array([center]), np.array([1]) |
---|
130 | |
---|
131 | #returns the effective radius used in sasview |
---|
132 | def ER_ellipsoid(radius_polar, radius_equatorial): |
---|
133 | ee = np.empty_like(radius_polar) |
---|
134 | if radius_polar > radius_equatorial: |
---|
135 | ee = (radius_polar**2 - radius_equatorial**2)/radius_polar**2 |
---|
136 | elif radius_polar < radius_equatorial: |
---|
137 | ee = (radius_equatorial**2 - radius_polar**2) / radius_equatorial**2 |
---|
138 | else: |
---|
139 | ee = 2*radius_polar |
---|
140 | if radius_polar * radius_equatorial != 0: |
---|
141 | bd = 1.0 - ee |
---|
142 | e1 = np.sqrt(ee) |
---|
143 | b1 = 1.0 + np.arcsin(e1) / (e1*np.sqrt(bd)) |
---|
144 | bL = (1.0 + e1) / (1.0 - e1) |
---|
145 | b2 = 1.0 + bd / 2 / e1 * np.log(bL) |
---|
146 | delta = 0.75 * b1 * b2 |
---|
147 | ddd = np.zeros_like(radius_polar) |
---|
148 | ddd = 2.0*(delta + 1.0)*radius_polar*radius_equatorial**2 |
---|
149 | return 0.5*ddd**(1.0 / 3.0) |
---|
150 | |
---|
151 | def ellipsoid_volume(radius_polar, radius_equatorial): |
---|
152 | volume = (4./3.)*pi*radius_polar*radius_equatorial**2 |
---|
153 | return volume |
---|
154 | |
---|
155 | # F1 is F(q) |
---|
156 | # F2 is F(g)^2 |
---|
157 | #IQM is I(q) with monodispersity |
---|
158 | #IQSM is I(q) with structure factor S(q) and monodispersity |
---|
159 | #IQBM is I(q) with Beta Approximation and monodispersity |
---|
160 | #SQ is monodisperse approach for structure factor |
---|
161 | #SQ_EFF is the effective structure factor from beta approx |
---|
162 | def ellipsoid_theta(q, radius_polar, radius_equatorial, sld, sld_solvent, |
---|
163 | volfraction=0, radius_effective=None): |
---|
164 | #creates values z and corresponding probabilities w from legendre-gauss quadrature |
---|
165 | volume = ellipsoid_volume(radius_polar, radius_equatorial) |
---|
166 | z, w = leggauss(76) |
---|
167 | F1 = np.zeros_like(q) |
---|
168 | F2 = np.zeros_like(q) |
---|
169 | #use a u subsition(u=cos) and then u=(z+1)/2 to change integration from |
---|
170 | #0->2pi with respect to alpha to -1->1 with respect to z, allowing us to use |
---|
171 | #legendre-gauss quadrature |
---|
172 | for k, qk in enumerate(q): |
---|
173 | r = sqrt(radius_equatorial**2*(1-((z+1)/2)**2)+radius_polar**2*((z+1)/2)**2) |
---|
174 | form = (sld-sld_solvent)*volume*sas_3j1x_x(qk*r) |
---|
175 | F2[k] = np.sum(w*form**2) |
---|
176 | F1[k] = np.sum(w*form) |
---|
177 | #the 1/2 comes from the change of variables mentioned above |
---|
178 | F2 = F2/2.0 |
---|
179 | F1 = F1/2.0 |
---|
180 | if radius_effective is None: |
---|
181 | radius_effective = ER_ellipsoid(radius_polar,radius_equatorial) |
---|
182 | SQ = hardsphere_simple(q, radius_effective, volfraction) |
---|
183 | SQ_EFF = 1 + F1**2/F2*(SQ - 1) |
---|
184 | IQM = 1e-4*F2/volume |
---|
185 | IQSM = volfraction*IQM*SQ |
---|
186 | IQBM = volfraction*IQM*SQ_EFF |
---|
187 | return Theory(Q=q, F1=F1, F2=F2, P=IQM, S=SQ, I=IQSM, Seff=SQ_EFF, Ibeta=IQBM) |
---|
188 | |
---|
189 | #IQD is I(q) polydispursed, IQSD is I(q)S(q) polydispursed, etc. |
---|
190 | #IQBD HAS NOT BEEN CROSS CHECKED AT ALL |
---|
191 | def ellipsoid_pe(q, radius_polar, radius_equatorial, sld, sld_solvent, |
---|
192 | radius_polar_pd=0.1, radius_equatorial_pd=0.1, |
---|
193 | radius_polar_pd_type='gaussian', |
---|
194 | radius_equatorial_pd_type='gaussian', |
---|
195 | volfraction=0, radius_effective=None, |
---|
196 | background=0, scale=1, |
---|
197 | norm='sasview'): |
---|
198 | if norm not in ['sasview', 'sasfit', 'yun']: |
---|
199 | raise TypeError("unknown norm "+norm) |
---|
200 | if radius_polar_pd_type == 'gaussian': |
---|
201 | Rp_val, Rp_prob = gaussian_distribution(radius_polar, radius_polar_pd*radius_polar, 0, inf) |
---|
202 | elif radius_polar_pd_type == 'schulz': |
---|
203 | Rp_val, Rp_prob = schulz_distribution(radius_polar, radius_polar_pd*radius_polar, 0, inf) |
---|
204 | if radius_equatorial_pd_type == 'gaussian': |
---|
205 | Re_val, Re_prob = gaussian_distribution(radius_equatorial, radius_equatorial_pd*radius_equatorial, 0, inf) |
---|
206 | elif radius_equatorial_pd_type == 'schulz': |
---|
207 | Re_val, Re_prob = schulz_distribution(radius_equatorial, radius_equatorial_pd*radius_equatorial, 0, inf) |
---|
208 | total_weight = total_volume = 0 |
---|
209 | radius_eff = 0 |
---|
210 | F1, F2 = np.zeros_like(q), np.zeros_like(q) |
---|
211 | for k, Rpk in enumerate(Rp_val): |
---|
212 | print("ellipsoid cycle", k, "of", len(Rp_val)) |
---|
213 | for i, Rei in enumerate(Re_val): |
---|
214 | theory = ellipsoid_theta(q, Rpk, Rei, sld, sld_solvent) |
---|
215 | volume = ellipsoid_volume(Rpk, Rei) |
---|
216 | weight = Rp_prob[k]*Re_prob[i] |
---|
217 | total_weight += weight |
---|
218 | total_volume += weight*volume |
---|
219 | F1 += theory.F1*weight |
---|
220 | F2 += theory.F2*weight |
---|
221 | radius_eff += weight*ER_ellipsoid(Rpk, Rei) |
---|
222 | F1 /= total_weight |
---|
223 | F2 /= total_weight |
---|
224 | average_volume = total_volume/total_weight |
---|
225 | if radius_effective is None: |
---|
226 | radius_effective = radius_eff/total_weight |
---|
227 | if norm == 'sasfit': |
---|
228 | IQD = F2 |
---|
229 | elif norm == 'sasview': |
---|
230 | # Note: internally, sasview uses F2/total_volume because: |
---|
231 | # average_volume = total_volume/total_weight |
---|
232 | # F2/total_weight / average_volume |
---|
233 | # = F2/total_weight / total_volume/total_weight |
---|
234 | # = F2/total_volume |
---|
235 | IQD = F2/average_volume*1e-4*volfraction |
---|
236 | F1 *= 1e-2 # Yun is using sld in 1/A^2, not 1e-6/A^2 |
---|
237 | F2 *= 1e-4 |
---|
238 | elif norm == 'yun': |
---|
239 | F1 *= 1e-6 # Yun is using sld in 1/A^2, not 1e-6/A^2 |
---|
240 | F2 *= 1e-12 |
---|
241 | IQD = F2/average_volume*1e8*volfraction |
---|
242 | SQ = hardsphere_simple(q, radius_effective, volfraction) |
---|
243 | beta = F1**2/F2 |
---|
244 | SQ_EFF = 1 + beta*(SQ - 1) |
---|
245 | IQSD = IQD*SQ |
---|
246 | IQBD = IQD*SQ_EFF |
---|
247 | return Theory(Q=q, F1=F1, F2=F2, P=IQD, S=SQ, I=IQSD, Seff=SQ_EFF, Ibeta=IQBD) |
---|
248 | |
---|
249 | #polydispersity for sphere |
---|
250 | def sphere_r(q,radius,sld,sld_solvent, |
---|
251 | radius_pd=0.1, radius_pd_type='gaussian', |
---|
252 | volfraction=0, radius_effective=None, |
---|
253 | background=0, scale=1, |
---|
254 | norm='sasview'): |
---|
255 | if norm not in ['sasview', 'sasfit', 'yun']: |
---|
256 | raise TypeError("unknown norm "+norm) |
---|
257 | if radius_pd_type == 'gaussian': |
---|
258 | radius_val, radius_prob = gaussian_distribution(radius, radius_pd*radius, 0, inf) |
---|
259 | elif radius_pd_type == 'schulz': |
---|
260 | radius_val, radius_prob = schulz_distribution(radius, radius_pd*radius, 0, inf) |
---|
261 | total_weight = total_volume = 0 |
---|
262 | F1 = np.zeros_like(q) |
---|
263 | F2 = np.zeros_like(q) |
---|
264 | for k, rk in enumerate(radius_val): |
---|
265 | volume = 4./3.*pi*rk**3 |
---|
266 | total_weight += radius_prob[k] |
---|
267 | total_volume += radius_prob[k]*volume |
---|
268 | form = (sld-sld_solvent)*volume*sas_3j1x_x(q*rk) |
---|
269 | F2 += radius_prob[k]*form**2 |
---|
270 | F1 += radius_prob[k]*form |
---|
271 | F1 /= total_weight |
---|
272 | F2 /= total_weight |
---|
273 | average_volume = total_volume/total_weight |
---|
274 | |
---|
275 | if radius_effective is None: |
---|
276 | radius_effective = radius |
---|
277 | print("radius_effective ",radius_effective) |
---|
278 | average_volume = total_volume/total_weight |
---|
279 | if norm == 'sasfit': |
---|
280 | IQD = F2 |
---|
281 | elif norm == 'sasview': |
---|
282 | IQD = F2/average_volume*1e-4*volfraction |
---|
283 | elif norm == 'yun': |
---|
284 | F1 *= 1e-6 # Yun is using sld in 1/A^2, not 1e-6/A^2 |
---|
285 | F2 *= 1e-12 |
---|
286 | IQD = F2/average_volume*1e8*volfraction |
---|
287 | SQ = hardsphere_simple(q, radius_effective, volfraction) |
---|
288 | beta = F1**2/F2 |
---|
289 | SQ_EFF = 1 + beta*(SQ - 1) |
---|
290 | IQSD = IQD*SQ |
---|
291 | IQBD = IQD*SQ_EFF |
---|
292 | return Theory(Q=q, F1=F1, F2=F2, P=IQD, S=SQ, I=IQSD, Seff=SQ_EFF, Ibeta=IQBD) |
---|
293 | |
---|
294 | #polydispersity for vesicle |
---|
295 | def vesicle_pe(q,radius=20, thickness=10, sld=4, sld_solvent=1, volfraction=0.03, |
---|
296 | radius_pd=0.1, thickness_pd=0.2, radius_pd_type="gaussian", thickness_pd_type="gaussian", |
---|
297 | radius_effective=None, background=0, scale=1, |
---|
298 | norm='sasview'): |
---|
299 | if norm not in ['sasview', 'sasfit', 'yun']: |
---|
300 | raise TypeError("unknown norm "+norm) |
---|
301 | if radius_pd_type == 'gaussian': |
---|
302 | R_val, R_prob = gaussian_distribution(radius, radius_pd*radius, 0, inf) |
---|
303 | elif radius_pd_type == 'schulz': |
---|
304 | R_val, R_prob = schulz_distribution(radius, radius_pd*radius, 0, inf) |
---|
305 | if thickness_pd_type == 'gaussian': |
---|
306 | T_val, T_prob = gaussian_distribution(thickness, thickness_pd*thickness, 0, inf) |
---|
307 | elif thickness_pd_type == 'schulz': |
---|
308 | T_val, T_prob = schulz_distribution(thickness, thickness_pd*thickness, 0, inf) |
---|
309 | total_weight = total_volume = total_shell = 0 |
---|
310 | radius_eff = 0 |
---|
311 | F1, F2 = np.zeros_like(q), np.zeros_like(q) |
---|
312 | for k, Rk in enumerate(R_val): |
---|
313 | print("vesicle cycle", k, "of", len(R_val)," Rk ",Rk) |
---|
314 | volume_in = 4./3.*pi*Rk**3 |
---|
315 | form_in = (sld-sld_solvent)*volume_in*sas_3j1x_x(q*Rk) |
---|
316 | for i, Ti in enumerate(T_val): |
---|
317 | Rout = Rk + Ti |
---|
318 | volume_out = 4./3.*pi*Rout**3 |
---|
319 | form_out = (sld-sld_solvent)*volume_out*sas_3j1x_x(q*Rout) |
---|
320 | form = form_out - form_in |
---|
321 | volume = volume_out - volume_in |
---|
322 | weight = R_prob[k]*T_prob[i] |
---|
323 | total_weight += weight |
---|
324 | total_shell += weight*volume |
---|
325 | total_volume += weight*volume_out |
---|
326 | F1 += form*weight |
---|
327 | F2 += form**2*weight |
---|
328 | radius_eff += weight*Rout |
---|
329 | F1 /= total_weight |
---|
330 | F2 /= total_weight |
---|
331 | average_volume = total_volume/total_weight |
---|
332 | if radius_effective is None: |
---|
333 | radius_effective = radius_eff/total_weight |
---|
334 | print("radius_effective ",radius_effective) |
---|
335 | if norm == 'sasfit': |
---|
336 | IQD = F2 |
---|
337 | elif norm == 'sasview': |
---|
338 | # Note: internally, sasview uses F2/total_volume because: |
---|
339 | # average_volume = total_volume/total_weight |
---|
340 | # F2/total_weight / average_volume |
---|
341 | # = F2/total_weight / total_volume/total_weight |
---|
342 | # = F2/total_volume |
---|
343 | IQD = F2/average_volume*1e-4*volfraction |
---|
344 | F1 *= 1e-2 # Yun is using sld in 1/A^2, not 1e-6/A^2 |
---|
345 | F2 *= 1e-4 |
---|
346 | elif norm == 'yun': |
---|
347 | F1 *= 1e-6 # Yun is using sld in 1/A^2, not 1e-6/A^2 |
---|
348 | F2 *= 1e-12 |
---|
349 | IQD = F2/average_volume*1e8*volfraction |
---|
350 | # RKH SORT THIS OUT WHEN HAVE NEW MODEL |
---|
351 | vfff=volfraction*(30./20.)**3 |
---|
352 | print("radius_effective, fudged volfaction for S(Q) ",radius_effective,vfff) |
---|
353 | SQ = hardsphere_simple(q, radius_effective, vfff) |
---|
354 | beta = F1**2/F2 |
---|
355 | SQ_EFF = 1 + beta*(SQ - 1) |
---|
356 | IQSD = IQD*SQ |
---|
357 | IQBD = IQD*SQ_EFF |
---|
358 | return Theory(Q=q, F1=F1, F2=F2, P=IQD, S=SQ, I=IQSD, Seff=SQ_EFF, Ibeta=IQBD) |
---|
359 | # |
---|
360 | #polydispersity for hollow_cylinder |
---|
361 | def hollow_cylinder_pe(q,radius=20, thickness=10, sld=4, sld_solvent=1, volfraction=0.15, |
---|
362 | radius_pd=0.1, thickness_pd=0.2, length_pd=0.05, radius_pd_type="gaussian", thickness_pd_type="gaussian", |
---|
363 | radius_effective=None, background=0, scale=1, |
---|
364 | norm='sasview'): |
---|
365 | if norm not in ['sasview', 'sasfit', 'yun']: |
---|
366 | raise TypeError("unknown norm "+norm) |
---|
367 | if radius_pd_type == 'gaussian': |
---|
368 | R_val, R_prob = gaussian_distribution(radius, radius_pd*radius, 0, inf) |
---|
369 | elif radius_pd_type == 'schulz': |
---|
370 | R_val, R_prob = schulz_distribution(radius, radius_pd*radius, 0, inf) |
---|
371 | if thickness_pd_type == 'gaussian': |
---|
372 | T_val, T_prob = gaussian_distribution(thickness, thickness_pd*thickness, 0, inf) |
---|
373 | elif thickness_pd_type == 'schulz': |
---|
374 | T_val, T_prob = schulz_distribution(thickness, thickness_pd*thickness, 0, inf) |
---|
375 | if length_pd_type == 'gaussian': |
---|
376 | T_val, T_prob = gaussian_distribution(length, length_pd*length, 0, inf) |
---|
377 | elif length_pd_type == 'schulz': |
---|
378 | L_val, L_prob = schulz_distribution(length, length_pd*length, 0, inf) |
---|
379 | total_weight = total_volume = total_shell = 0 |
---|
380 | radius_eff = 0 |
---|
381 | F1, F2 = np.zeros_like(q), np.zeros_like(q) |
---|
382 | for k, Rk in enumerate(R_val): |
---|
383 | print("hollow_cylinder cycle", k, "of", len(R_val)," Rk ",Rk) |
---|
384 | for i, Ti in enumerate(T_val): |
---|
385 | for j, Lj in enumerate(L_val): |
---|
386 | Rout = Rk + Ti |
---|
387 | volume_out = pi*Rout**2*Lj |
---|
388 | volume_in = pi*Rk**2*Lj |
---|
389 | volume = volume_out - volume_in |
---|
390 | theory = hollow_cylinder_theta(q, Rk, Ti, Lj, sld, sld_solvent, |
---|
391 | volfraction=0, radius_effective=None) |
---|
392 | weight = R_prob[k]*T_prob[i]*L_prob[j] |
---|
393 | total_weight += weight |
---|
394 | total_shell += weight*volume |
---|
395 | total_volume += weight*volume_out |
---|
396 | F1 += theory.F1*weight |
---|
397 | F2 += theory.F2*weight |
---|
398 | radius_eff += weight*ER_hollow_cylinder(radius, thickness, length) |
---|
399 | F1 /= total_weight |
---|
400 | F2 /= total_weight |
---|
401 | average_volume = total_volume/total_weight |
---|
402 | if radius_effective is None: |
---|
403 | radius_effective = radius_eff/total_weight |
---|
404 | print("radius_effective ",radius_effective) |
---|
405 | if norm == 'sasfit': |
---|
406 | IQD = F2 |
---|
407 | elif norm == 'sasview': |
---|
408 | # Note: internally, sasview uses F2/total_volume because: |
---|
409 | # average_volume = total_volume/total_weight |
---|
410 | # F2/total_weight / average_volume |
---|
411 | # = F2/total_weight / total_volume/total_weight |
---|
412 | # = F2/total_volume |
---|
413 | IQD = F2/average_volume*1e-4*volfraction |
---|
414 | F1 *= 1e-2 # Yun is using sld in 1/A^2, not 1e-6/A^2 |
---|
415 | F2 *= 1e-4 |
---|
416 | elif norm == 'yun': |
---|
417 | F1 *= 1e-6 # Yun is using sld in 1/A^2, not 1e-6/A^2 |
---|
418 | F2 *= 1e-12 |
---|
419 | IQD = F2/average_volume*1e8*volfraction |
---|
420 | # RKH SORT THIS OUT WHEN HAVE NEW MODEL |
---|
421 | vfff=volfraction |
---|
422 | print("radius_effective, volfaction for S(Q) ",radius_effective,vfff) |
---|
423 | SQ = hardsphere_simple(q, radius_effective, vfff) |
---|
424 | beta = F1**2/F2 |
---|
425 | SQ_EFF = 1 + beta*(SQ - 1) |
---|
426 | IQSD = IQD*SQ |
---|
427 | IQBD = IQD*SQ_EFF |
---|
428 | return Theory(Q=q, F1=F1, F2=F2, P=IQD, S=SQ, I=IQSD, Seff=SQ_EFF, Ibeta=IQBD) |
---|
429 | |
---|
430 | # RKH copying Paul K's ellipsoid here, this computes everything for monodisperse case |
---|
431 | # and supplies partial results for polydisperse case. |
---|
432 | def hollow_cylinder_theta(q, radius, thickness, length, sld, sld_solvent, |
---|
433 | volfraction=0, radius_effective=None): |
---|
434 | #creates values z and corresponding probabilities w from legendre-gauss quadrature |
---|
435 | z, w = leggauss(76) |
---|
436 | F1 = np.zeros_like(q) |
---|
437 | F2 = np.zeros_like(q) |
---|
438 | #use a u subsition(u=cos) and then u=(z+1)/2 to change integration from |
---|
439 | #0->2pi with respect to alpha to -1->1 with respect to z, allowing us to use |
---|
440 | #legendre-gauss quadrature |
---|
441 | lower = 0.0 |
---|
442 | upper = 1.0 |
---|
443 | gamma_sq = (radius/(radius+thickness))**2 |
---|
444 | for k, qk in enumerate(q): |
---|
445 | for i, zt in enumerate(z): |
---|
446 | # quadrature loop |
---|
447 | cos_theta = 0.5*( zt* (upper-lower) + lower + upper ) |
---|
448 | sin_theta = sqrt(1.0 - cos_theta*cos_theta) |
---|
449 | aaa=(radius+thickness)*qk*sin_theta |
---|
450 | ## sas_J1 expects an array, so try direct use of J1 |
---|
451 | lam1 = J1(aaa)/aaa |
---|
452 | aaa=radius*qk*sin_theta |
---|
453 | lam2 = J1(aaa)/aaa |
---|
454 | psi = (lam1 - gamma_sq*lam2)/(1.0 - gamma_sq) |
---|
455 | #Note: lim_{thickness -> 0} psi = sas_J0(radius*qab) |
---|
456 | #Note: lim_{radius -> 0} psi = sas_2J1x_x(thickness*qab) |
---|
457 | aaa=0.5*length*qk*cos_theta |
---|
458 | t2 = sin(aaa)/aaa |
---|
459 | # t2 = sas_sinx_x(0.5*length*qk*cos_theta) |
---|
460 | form = psi*t2 |
---|
461 | F1[i] += w[i] * form |
---|
462 | F2[i] += w[i] * form * form |
---|
463 | volume = pi*((radius + thickness)**2 - radius**2)*length |
---|
464 | s = (sld - sld_solvent) * volume |
---|
465 | F2 = F2*s*(upper - lower)/2.0 |
---|
466 | F1 = F1*s*s*(upper - lower)/2.0 |
---|
467 | if radius_effective is None: |
---|
468 | radius_effective = ER_hollow_cylinder(radius, thickness, length) |
---|
469 | SQ = hardsphere_simple(q, radius_effective, volfraction) |
---|
470 | SQ_EFF = 1 + F1**2/F2*(SQ - 1) |
---|
471 | IQM = 1e-4*F2/volume |
---|
472 | IQSM = volfraction*IQM*SQ |
---|
473 | IQBM = volfraction*IQM*SQ_EFF |
---|
474 | return Theory(Q=q, F1=F1, F2=F2, P=IQM, S=SQ, I=IQSM, Seff=SQ_EFF, Ibeta=IQBM) |
---|
475 | # |
---|
476 | def ER_hollow_cylinder(radius, thickness, length): |
---|
477 | """ |
---|
478 | :param radius: Cylinder core radius |
---|
479 | :param thickness: Cylinder wall thickness |
---|
480 | :param length: Cylinder length |
---|
481 | :return: Effective radius |
---|
482 | """ |
---|
483 | router = radius + thickness |
---|
484 | if router == 0 or length == 0: |
---|
485 | return 0.0 |
---|
486 | len1 = router |
---|
487 | len2 = length/2.0 |
---|
488 | term1 = len1*len1*2.0*len2/2.0 |
---|
489 | term2 = 1.0 + (len2/len1)*(1.0 + 1/len2/2.0)*(1.0 + pi*len1/len2/2.0) |
---|
490 | ddd = 3.0*term1*term2 |
---|
491 | diam = pow(ddd, (1.0/3.0)) |
---|
492 | return diam |
---|
493 | |
---|
494 | ############################################################################### |
---|
495 | ############################################################################### |
---|
496 | ############################################################################### |
---|
497 | ################## ################## |
---|
498 | ################## TESTS ################## |
---|
499 | ################## ################## |
---|
500 | ############################################################################### |
---|
501 | ############################################################################### |
---|
502 | ############################################################################### |
---|
503 | |
---|
504 | def popn(d, keys): |
---|
505 | """ |
---|
506 | Splits a dict into two, with any key of *d* which is in *keys* removed |
---|
507 | from *d* and added to *b*. Returns *b*. |
---|
508 | """ |
---|
509 | b = {} |
---|
510 | for k in keys: |
---|
511 | try: |
---|
512 | b[k] = d.pop(k) |
---|
513 | except KeyError: |
---|
514 | pass |
---|
515 | return b |
---|
516 | |
---|
517 | def sasmodels_theory(q, Pname, **pars): |
---|
518 | """ |
---|
519 | Call sasmodels to compute the model with and without a hard sphere |
---|
520 | structure factor. |
---|
521 | """ |
---|
522 | #mono_pars = {k: (0 if k.endswith('_pd') else v) for k, v in pars.items()} |
---|
523 | Ppars = pars.copy() |
---|
524 | Spars = popn(Ppars, ['radius_effective', 'volfraction']) |
---|
525 | Ipars = pars.copy() |
---|
526 | |
---|
527 | # Autofill npts and nsigmas for the given pd type |
---|
528 | for k, v in pars.items(): |
---|
529 | if k.endswith("_pd_type"): |
---|
530 | if v == "gaussian": |
---|
531 | n, nsigmas = N_GAUSS, NSIGMA_GAUSS |
---|
532 | elif v == "schulz": |
---|
533 | n, nsigmas = N_SCHULZ, NSIGMA_SCHULZ |
---|
534 | Ppars.setdefault(k.replace("_pd_type", "_pd_n"), n) |
---|
535 | Ppars.setdefault(k.replace("_pd_type", "_pd_nsigma"), nsigmas) |
---|
536 | Ipars.setdefault(k.replace("_pd_type", "_pd_n"), n) |
---|
537 | Ipars.setdefault(k.replace("_pd_type", "_pd_nsigma"), nsigmas) |
---|
538 | |
---|
539 | #Ppars['scale'] = Spars.get('volfraction', 1) |
---|
540 | P = build_model(Pname, q) |
---|
541 | S = build_model("hardsphere", q) |
---|
542 | I = build_model(Pname+"@hardsphere", q) |
---|
543 | Pq = P(**Ppars)*pars.get('volfraction', 1) |
---|
544 | Sq = S(**Spars) |
---|
545 | Iq = I(**Ipars) |
---|
546 | #Iq = Pq*Sq*pars.get('volfraction', 1) |
---|
547 | #Sq = Iq/Pq |
---|
548 | #Iq = None#= Sq = None |
---|
549 | r = dict(I._kernel.results()) |
---|
550 | #print(r) |
---|
551 | return Theory(Q=q, F1=None, F2=None, P=Pq, S=None, I=None, Seff=r["S_eff(Q)"], Ibeta=Iq) |
---|
552 | |
---|
553 | def compare(title, target, actual, fields='F1 F2 P S I Seff Ibeta'): |
---|
554 | """ |
---|
555 | Plot fields in common between target and actual, along with relative error. |
---|
556 | """ |
---|
557 | available = [s for s in fields.split() |
---|
558 | if getattr(target, s) is not None and getattr(actual, s) is not None] |
---|
559 | rows = len(available) |
---|
560 | for row, field in enumerate(available): |
---|
561 | Q = target.Q |
---|
562 | I1, I2 = getattr(target, field), getattr(actual, field) |
---|
563 | plt.subplot(rows, 2, 2*row+1) |
---|
564 | plt.loglog(Q, abs(I1), label="target "+field) |
---|
565 | plt.loglog(Q, abs(I2), label="value "+field) |
---|
566 | #plt.legend(loc="upper left", bbox_to_anchor=(1,1)) |
---|
567 | plt.legend(loc='lower left') |
---|
568 | plt.subplot(rows, 2, 2*row+2) |
---|
569 | plt.semilogx(Q, I2/I1 - 1, label="relative error") |
---|
570 | #plt.semilogx(Q, I1/I2 - 1, label="relative error") |
---|
571 | plt.tight_layout() |
---|
572 | plt.suptitle(title) |
---|
573 | plt.show() |
---|
574 | |
---|
575 | def data_file(name): |
---|
576 | return os.path.join(BETA_DIR, 'data_files', name) |
---|
577 | |
---|
578 | def load_sasfit(path): |
---|
579 | data = np.loadtxt(path, dtype=str, delimiter=';').T |
---|
580 | data = np.vstack((list(map(float, v)) for v in data[0:2])) |
---|
581 | return data |
---|
582 | |
---|
583 | COMPARISON = {} # Type: Dict[(str,str,str)] -> Callable[(), None] |
---|
584 | |
---|
585 | def compare_sasview_sphere(pd_type='schulz'): |
---|
586 | q = np.logspace(-5, 0, 250) |
---|
587 | model = 'sphere' |
---|
588 | pars = dict( |
---|
589 | radius=20, sld=4, sld_solvent=1, |
---|
590 | background=0, |
---|
591 | radius_pd=.1, radius_pd_type=pd_type, |
---|
592 | volfraction=0.15, |
---|
593 | radius_effective=12.59921049894873, # equivalent average sphere radius |
---|
594 | ) |
---|
595 | target = sasmodels_theory(q, model, effective_radius_mode=0, structure_factor_mode=1, **pars) |
---|
596 | actual = sphere_r(q, norm='sasview', **pars) |
---|
597 | title = " ".join(("sasmodels", model, pd_type)) |
---|
598 | compare(title, target, actual) |
---|
599 | COMPARISON[('sasview', 'sphere', 'gaussian')] = lambda: compare_sasview_sphere(pd_type='gaussian') |
---|
600 | COMPARISON[('sasview', 'sphere', 'schulz')] = lambda: compare_sasview_sphere(pd_type='schulz') |
---|
601 | |
---|
602 | |
---|
603 | def compare_sasview_vesicle(pd_type='gaussian'): |
---|
604 | q = np.logspace(-5, 0, 250) |
---|
605 | model = 'vesicle' |
---|
606 | print("F2 seems OK, but big issues with S(Q), wo work in progress") |
---|
607 | # NOTE parameers for vesicle model are soon to be changed to remove "volfraction" |
---|
608 | pars = dict( |
---|
609 | radius=20, thickness=10, sld=4, sld_solvent=1, volfraction=0.03, |
---|
610 | background=0, |
---|
611 | radius_pd=0.1, thickness_pd=0.0, radius_pd_type=pd_type, thickness_pd_type=pd_type |
---|
612 | #,radius_effective=12.59921049894873, # equivalent average sphere radius |
---|
613 | ) |
---|
614 | target = sasmodels_theory(q, model, effective_radius_mode=0, structure_factor_mode=1, **pars) |
---|
615 | actual = vesicle_pe(q, norm='sasview', **pars) |
---|
616 | title = " ".join(("sasmodels", model, pd_type)) |
---|
617 | compare(title, target, actual) |
---|
618 | COMPARISON[('sasview', 'vesicle', 'gaussian')] = lambda: compare_sasview_vesicle(pd_type='gaussian') |
---|
619 | COMPARISON[('sasview', 'vesicle', 'schulz')] = lambda: compare_sasview_vesicle(pd_type='schulz') |
---|
620 | |
---|
621 | def compare_sasview_hollow_cylinder(pd_type='gaussian'): |
---|
622 | q = np.logspace(-5, 0, 250) |
---|
623 | model = 'hollow_cylinder' |
---|
624 | print(model) |
---|
625 | print("just about works for monodisperse, polydisperse needs work") |
---|
626 | # NOTE parameters for hollow_cylinder model are soon to be changed to remove "volfraction" |
---|
627 | # setting all three pd to zero is OK |
---|
628 | pars = dict( |
---|
629 | radius=20, thickness=10, length=80, sld=4, sld_solvent=1, |
---|
630 | background=0, |
---|
631 | radius_pd=0.1, thickness_pd=0.0, length_pd=0.0, radius_pd_type=pd_type, thickness_pd_type=pd_type, length_pd_type=pd_type |
---|
632 | #,radius_effective=12.59921049894873, # equivalent average sphere radius |
---|
633 | ) |
---|
634 | target = sasmodels_theory(q, model, effective_radius_mode=0, structure_factor_mode=1, **pars) |
---|
635 | actual = hollow_cylinder_pe(q, norm='sasview', **pars) |
---|
636 | # RKH monodisp was OK, actual = hollow_cylinder_theta(q,radius=20, thickness=10, length=80, sld=4, sld_solvent=1 ) |
---|
637 | title = " ".join(("sasmodels", model, pd_type)) |
---|
638 | compare(title, target, actual) |
---|
639 | COMPARISON[('sasview', 'hollow_cylinder', 'gaussian')] = lambda: compare_sasview_hollow_cylinder(pd_type='gaussian') |
---|
640 | COMPARISON[('sasview', 'hollow_cylinder', 'schulz')] = lambda: compare_sasview_hollow_cylinder(pd_type='schulz') |
---|
641 | |
---|
642 | |
---|
643 | def compare_sasview_ellipsoid(pd_type='gaussian'): |
---|
644 | q = np.logspace(-5, 0, 50) |
---|
645 | model = 'ellipsoid' |
---|
646 | pars = dict( |
---|
647 | radius_polar=20, radius_equatorial=400, sld=4, sld_solvent=1, |
---|
648 | background=0, |
---|
649 | radius_polar_pd=0.1, radius_polar_pd_type=pd_type, |
---|
650 | radius_equatorial_pd=0.1, radius_equatorial_pd_type=pd_type, |
---|
651 | volfraction=0.15, |
---|
652 | radius_effective=270.7543927018, |
---|
653 | #radius_effective=12.59921049894873, |
---|
654 | ) |
---|
655 | target = sasmodels_theory(q, model, effective_radius_mode=0, structure_factor_mode=1, **pars) |
---|
656 | actual = ellipsoid_pe(q, norm='sasview', **pars) |
---|
657 | # RKH test actual = ellipsoid_theta(q, radius_polar=20, radius_equatorial=400, sld=4, sld_solvent=1, volfraction=0.15, radius_effective=270.) |
---|
658 | title = " ".join(("sasmodels", model, pd_type)) |
---|
659 | compare(title, target, actual) |
---|
660 | COMPARISON[('sasview', 'ellipsoid', 'gaussian')] = lambda: compare_sasview_ellipsoid(pd_type='gaussian') |
---|
661 | COMPARISON[('sasview', 'ellipsoid', 'schulz')] = lambda: compare_sasview_ellipsoid(pd_type='schulz') |
---|
662 | |
---|
663 | def compare_yun_ellipsoid_mono(): |
---|
664 | pars = { |
---|
665 | 'radius_polar': 20, 'radius_polar_pd': 0, 'radius_polar_pd_type': 'gaussian', |
---|
666 | 'radius_equatorial': 10, 'radius_equatorial_pd': 0, 'radius_equatorial_pd_type': 'gaussian', |
---|
667 | 'sld': 2, 'sld_solvent': 1, |
---|
668 | 'volfraction': 0.15, |
---|
669 | # Yun uses radius for same volume sphere for effective radius |
---|
670 | # whereas sasview uses the average curvature. |
---|
671 | 'radius_effective': 12.59921049894873, |
---|
672 | } |
---|
673 | |
---|
674 | data = np.loadtxt(data_file('yun_ellipsoid.dat'),skiprows=2).T |
---|
675 | Q = data[0] |
---|
676 | F1 = data[1] |
---|
677 | P = data[3]*pars['volfraction'] |
---|
678 | S = data[5] |
---|
679 | Seff = data[6] |
---|
680 | target = Theory(Q=Q, F1=F1, P=P, S=S, Seff=Seff) |
---|
681 | actual = ellipsoid_pe(Q, norm='yun', **pars) |
---|
682 | title = " ".join(("yun", "ellipsoid", "no pd")) |
---|
683 | #compare(title, target, actual, fields="P S I Seff Ibeta") |
---|
684 | compare(title, target, actual) |
---|
685 | COMPARISON[('yun', 'ellipsoid', 'gaussian')] = compare_yun_ellipsoid_mono |
---|
686 | COMPARISON[('yun', 'ellipsoid', 'schulz')] = compare_yun_ellipsoid_mono |
---|
687 | |
---|
688 | def compare_yun_sphere_gauss(): |
---|
689 | # Note: yun uses gauss limits from R0/10 to R0 + 5 sigma steps sigma/100 |
---|
690 | # With pd = 0.1, that's 14 sigma and 1400 points. |
---|
691 | pars = { |
---|
692 | 'radius': 20, 'radius_pd': 0.1, 'radius_pd_type': 'gaussian', |
---|
693 | 'sld': 6, 'sld_solvent': 0, |
---|
694 | 'volfraction': 0.1, |
---|
695 | } |
---|
696 | |
---|
697 | data = np.loadtxt(data_file('testPolydisperseGaussianSphere.dat'), skiprows=2).T |
---|
698 | Q = data[0] |
---|
699 | F1 = data[1] |
---|
700 | F2 = data[2] |
---|
701 | P = data[3] |
---|
702 | S = data[5] |
---|
703 | Seff = data[6] |
---|
704 | target = Theory(Q=Q, F1=F1, P=P, S=S, Seff=Seff) |
---|
705 | actual = sphere_r(Q, norm='yun', **pars) |
---|
706 | title = " ".join(("yun", "sphere", "10% dispersion 10% Vf")) |
---|
707 | compare(title, target, actual) |
---|
708 | data = np.loadtxt(data_file('testPolydisperseGaussianSphere2.dat'), skiprows=2).T |
---|
709 | pars.update(radius_pd=0.15) |
---|
710 | Q = data[0] |
---|
711 | F1 = data[1] |
---|
712 | F2 = data[2] |
---|
713 | P = data[3] |
---|
714 | S = data[5] |
---|
715 | Seff = data[6] |
---|
716 | target = Theory(Q=Q, F1=F1, P=P, S=S, Seff=Seff) |
---|
717 | actual = sphere_r(Q, norm='yun', **pars) |
---|
718 | title = " ".join(("yun", "sphere", "15% dispersion 10% Vf")) |
---|
719 | compare(title, target, actual) |
---|
720 | COMPARISON[('yun', 'sphere', 'gaussian')] = compare_yun_sphere_gauss |
---|
721 | |
---|
722 | |
---|
723 | def compare_sasfit_sphere_gauss(): |
---|
724 | #N=1,s=2,X0=20,distr radius R=20,eta_core=4,eta_solv=1,.3 |
---|
725 | pars = { |
---|
726 | 'radius': 20, 'radius_pd': 0.1, 'radius_pd_type': 'gaussian', |
---|
727 | 'sld': 4, 'sld_solvent': 1, |
---|
728 | 'volfraction': 0.3, |
---|
729 | } |
---|
730 | |
---|
731 | Q, IQ = load_sasfit(data_file('sasfit_sphere_IQD.txt')) |
---|
732 | Q, IQSD = load_sasfit(data_file('sasfit_sphere_IQSD.txt')) |
---|
733 | Q, IQBD = load_sasfit(data_file('sasfit_sphere_IQBD.txt')) |
---|
734 | Q, SQ = load_sasfit(data_file('sasfit_polydisperse_sphere_sq.txt')) |
---|
735 | Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_sphere_sqeff.txt')) |
---|
736 | target = Theory(Q=Q, F1=None, F2=None, P=IQ, S=SQ, I=IQSD, Seff=SQ_EFF, Ibeta=IQBD) |
---|
737 | actual = sphere_r(Q, norm="sasfit", **pars) |
---|
738 | title = " ".join(("sasfit", "sphere", "pd=10% gaussian")) |
---|
739 | compare(title, target, actual) |
---|
740 | #compare(title, target, actual, fields="P") |
---|
741 | COMPARISON[('sasfit', 'sphere', 'gaussian')] = compare_sasfit_sphere_gauss |
---|
742 | |
---|
743 | def compare_sasfit_sphere_schulz(): |
---|
744 | #radius=20,sld=4,sld_solvent=1,volfraction=0.3,radius_pd=0.1 |
---|
745 | #We have scaled the output from sasfit by 1e-4*volume*volfraction |
---|
746 | #0.10050378152592121 |
---|
747 | pars = { |
---|
748 | 'radius': 20, 'radius_pd': 0.1, 'radius_pd_type': 'schulz', |
---|
749 | 'sld': 4, 'sld_solvent': 1, |
---|
750 | 'volfraction': 0.3, |
---|
751 | } |
---|
752 | |
---|
753 | Q, IQ = load_sasfit(data_file('richard_test.txt')) |
---|
754 | Q, IQSD = load_sasfit(data_file('richard_test2.txt')) |
---|
755 | Q, IQBD = load_sasfit(data_file('richard_test3.txt')) |
---|
756 | target = Theory(Q=Q, F1=None, F2=None, P=IQ, S=None, I=IQSD, Seff=None, Ibeta=IQBD) |
---|
757 | actual = sphere_r(Q, norm="sasfit", **pars) |
---|
758 | title = " ".join(("sasfit", "sphere", "pd=10% schulz")) |
---|
759 | compare(title, target, actual) |
---|
760 | COMPARISON[('sasfit', 'sphere', 'schulz')] = compare_sasfit_sphere_schulz |
---|
761 | |
---|
762 | def compare_sasfit_ellipsoid_schulz(): |
---|
763 | #polarradius=20, equatorialradius=10, sld=4,sld_solvent=1,volfraction=0.3,radius_polar_pd=0.1 |
---|
764 | #Effective radius =13.1353356684 |
---|
765 | #We have scaled the output from sasfit by 1e-4*volume*volfraction |
---|
766 | #0.10050378152592121 |
---|
767 | pars = { |
---|
768 | 'radius_polar': 20, 'radius_polar_pd': 0.1, 'radius_polar_pd_type': 'schulz', |
---|
769 | 'radius_equatorial': 10, 'radius_equatorial_pd': 0., 'radius_equatorial_pd_type': 'schulz', |
---|
770 | 'sld': 4, 'sld_solvent': 1, |
---|
771 | 'volfraction': 0.3, 'radius_effective': 13.1353356684, |
---|
772 | } |
---|
773 | |
---|
774 | Q, IQ = load_sasfit(data_file('richard_test4.txt')) |
---|
775 | Q, IQSD = load_sasfit(data_file('richard_test5.txt')) |
---|
776 | Q, IQBD = load_sasfit(data_file('richard_test6.txt')) |
---|
777 | target = Theory(Q=Q, F1=None, F2=None, P=IQ, S=None, I=IQSD, Seff=None, Ibeta=IQBD) |
---|
778 | actual = ellipsoid_pe(Q, norm="sasfit", **pars) |
---|
779 | title = " ".join(("sasfit", "ellipsoid", "pd=10% schulz")) |
---|
780 | compare(title, target, actual) |
---|
781 | COMPARISON[('sasfit', 'ellipsoid', 'schulz')] = compare_sasfit_ellipsoid_schulz |
---|
782 | |
---|
783 | |
---|
784 | def compare_sasfit_ellipsoid_gaussian(): |
---|
785 | pars = { |
---|
786 | 'radius_polar': 20, 'radius_polar_pd': 0, 'radius_polar_pd_type': 'gaussian', |
---|
787 | 'radius_equatorial': 10, 'radius_equatorial_pd': 0, 'radius_equatorial_pd_type': 'gaussian', |
---|
788 | 'sld': 4, 'sld_solvent': 1, |
---|
789 | 'volfraction': 0, 'radius_effective': None, |
---|
790 | } |
---|
791 | |
---|
792 | #Rp=20,Re=10,eta_core=4,eta_solv=1 |
---|
793 | Q, PQ0 = load_sasfit(data_file('sasfit_ellipsoid_IQM.txt')) |
---|
794 | pars.update(volfraction=0, radius_polar_pd=0.0, radius_equatorial_pd=0, radius_effective=None) |
---|
795 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
796 | target = Theory(Q=Q, P=PQ0) |
---|
797 | compare("sasfit ellipsoid no poly", target, actual); plt.show() |
---|
798 | |
---|
799 | #N=1,s=2,X0=20,distr 10% polar Rp=20,Re=10,eta_core=4,eta_solv=1, no structure poly |
---|
800 | Q, PQ_Rp10 = load_sasfit(data_file('sasfit_ellipsoid_IQD.txt')) |
---|
801 | pars.update(volfraction=0, radius_polar_pd=0.1, radius_equatorial_pd=0.0, radius_effective=None) |
---|
802 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
803 | target = Theory(Q=Q, P=PQ_Rp10) |
---|
804 | compare("sasfit ellipsoid P(Q) 10% Rp", target, actual); plt.show() |
---|
805 | #N=1,s=1,X0=10,distr 10% equatorial Rp=20,Re=10,eta_core=4,eta_solv=1, no structure poly |
---|
806 | Q, PQ_Re10 = load_sasfit(data_file('sasfit_ellipsoid_IQD2.txt')) |
---|
807 | pars.update(volfraction=0, radius_polar_pd=0.0, radius_equatorial_pd=0.1, radius_effective=None) |
---|
808 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
809 | target = Theory(Q=Q, P=PQ_Re10) |
---|
810 | compare("sasfit ellipsoid P(Q) 10% Re", target, actual); plt.show() |
---|
811 | #N=1,s=6,X0=20,distr 30% polar Rp=20,Re=10,eta_core=4,eta_solv=1, no structure poly |
---|
812 | Q, PQ_Rp30 = load_sasfit(data_file('sasfit_ellipsoid_IQD3.txt')) |
---|
813 | pars.update(volfraction=0, radius_polar_pd=0.3, radius_equatorial_pd=0.0, radius_effective=None) |
---|
814 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
815 | target = Theory(Q=Q, P=PQ_Rp30) |
---|
816 | compare("sasfit ellipsoid P(Q) 30% Rp", target, actual); plt.show() |
---|
817 | #N=1,s=3,X0=10,distr 30% equatorial Rp=20,Re=10,eta_core=4,eta_solv=1, no structure poly |
---|
818 | Q, PQ_Re30 = load_sasfit(data_file('sasfit_ellipsoid_IQD4.txt')) |
---|
819 | pars.update(volfraction=0, radius_polar_pd=0.0, radius_equatorial_pd=0.3, radius_effective=None) |
---|
820 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
821 | target = Theory(Q=Q, P=PQ_Re30) |
---|
822 | compare("sasfit ellipsoid P(Q) 30% Re", target, actual); plt.show() |
---|
823 | #N=1,s=12,X0=20,distr 60% polar Rp=20,Re=10,eta_core=4,eta_solv=1, no structure poly |
---|
824 | Q, PQ_Rp60 = load_sasfit(data_file('sasfit_ellipsoid_IQD5.txt')) |
---|
825 | pars.update(volfraction=0, radius_polar_pd=0.6, radius_equatorial_pd=0.0, radius_effective=None) |
---|
826 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
827 | target = Theory(Q=Q, P=PQ_Rp60) |
---|
828 | compare("sasfit ellipsoid P(Q) 60% Rp", target, actual); plt.show() |
---|
829 | #N=1,s=6,X0=10,distr 60% equatorial Rp=20,Re=10,eta_core=4,eta_solv=1, no structure poly |
---|
830 | Q, PQ_Re60 = load_sasfit(data_file('sasfit_ellipsoid_IQD6.txt')) |
---|
831 | pars.update(volfraction=0, radius_polar_pd=0.0, radius_equatorial_pd=0.6, radius_effective=None) |
---|
832 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
833 | target = Theory(Q=Q, P=PQ_Re60) |
---|
834 | compare("sasfit ellipsoid P(Q) 60% Re", target, actual); plt.show() |
---|
835 | |
---|
836 | #N=1,s=2,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.1354236254,.15 |
---|
837 | Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq.txt')) |
---|
838 | Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff.txt')) |
---|
839 | pars.update(volfraction=0.15, radius_polar_pd=0.1, radius_equatorial_pd=0, radius_effective=13.1354236254) |
---|
840 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
841 | target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) |
---|
842 | compare("sasfit ellipsoid P(Q) 10% Rp 15% Vf", target, actual); plt.show() |
---|
843 | #N=1,s=6,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.0901197149,.15 |
---|
844 | Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq2.txt')) |
---|
845 | Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff2.txt')) |
---|
846 | pars.update(volfraction=0.15, radius_polar_pd=0.3, radius_equatorial_pd=0, radius_effective=13.0901197149) |
---|
847 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
848 | target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) |
---|
849 | compare("sasfit ellipsoid P(Q) 30% Rp 15% Vf", target, actual); plt.show() |
---|
850 | #N=1,s=12,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.336060917,.15 |
---|
851 | Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq3.txt')) |
---|
852 | Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff3.txt')) |
---|
853 | pars.update(volfraction=0.15, radius_polar_pd=0.6, radius_equatorial_pd=0, radius_effective=13.336060917) |
---|
854 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
855 | target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) |
---|
856 | compare("sasfit ellipsoid P(Q) 60% Rp 15% Vf", target, actual); plt.show() |
---|
857 | |
---|
858 | #N=1,s=2,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.1354236254,.3 |
---|
859 | Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq4.txt')) |
---|
860 | Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff4.txt')) |
---|
861 | pars.update(volfraction=0.3, radius_polar_pd=0.1, radius_equatorial_pd=0, radius_effective=13.1354236254) |
---|
862 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
863 | target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) |
---|
864 | compare("sasfit ellipsoid P(Q) 10% Rp 30% Vf", target, actual); plt.show() |
---|
865 | #N=1,s=6,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.0901197149,.3 |
---|
866 | Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq5.txt')) |
---|
867 | Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff5.txt')) |
---|
868 | pars.update(volfraction=0.3, radius_polar_pd=0.3, radius_equatorial_pd=0, radius_effective=13.0901197149) |
---|
869 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
870 | target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) |
---|
871 | compare("sasfit ellipsoid P(Q) 30% Rp 30% Vf", target, actual); plt.show() |
---|
872 | #N=1,s=12,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.336060917,.3 |
---|
873 | Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq6.txt')) |
---|
874 | Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff6.txt')) |
---|
875 | pars.update(volfraction=0.3, radius_polar_pd=0.6, radius_equatorial_pd=0, radius_effective=13.336060917) |
---|
876 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
877 | target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) |
---|
878 | compare("sasfit ellipsoid P(Q) 60% Rp 30% Vf", target, actual); plt.show() |
---|
879 | |
---|
880 | #N=1,s=2,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.1354236254,.6 |
---|
881 | Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq7.txt')) |
---|
882 | Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff7.txt')) |
---|
883 | pars.update(volfraction=0.6, radius_polar_pd=0.1, radius_equatorial_pd=0, radius_effective=13.1354236254) |
---|
884 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
885 | target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) |
---|
886 | compare("sasfit ellipsoid P(Q) 10% Rp 60% Vf", target, actual); plt.show() |
---|
887 | #N=1,s=6,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.0901197149,.6 |
---|
888 | Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq8.txt')) |
---|
889 | Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff8.txt')) |
---|
890 | pars.update(volfraction=0.6, radius_polar_pd=0.3, radius_equatorial_pd=0, radius_effective=13.0901197149) |
---|
891 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
892 | target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) |
---|
893 | compare("sasfit ellipsoid P(Q) 30% Rp 60% Vf", target, actual); plt.show() |
---|
894 | #N=1,s=12,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.336060917,.6 |
---|
895 | Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq9.txt')) |
---|
896 | Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff9.txt')) |
---|
897 | pars.update(volfraction=0.6, radius_polar_pd=0.6, radius_equatorial_pd=0, radius_effective=13.336060917) |
---|
898 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
899 | target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) |
---|
900 | compare("sasfit ellipsoid P(Q) 60% Rp 60% Vf", target, actual); plt.show() |
---|
901 | COMPARISON[('sasfit', 'ellipsoid', 'gaussian')] = compare_sasfit_ellipsoid_gaussian |
---|
902 | |
---|
903 | def main(): |
---|
904 | key = tuple(sys.argv[1:]) |
---|
905 | if key not in COMPARISON: |
---|
906 | print("Usage: python sasfit_compare.py [sasview|sasfit|yun] [sphere|ellipsoid|vesicle|hollow_cylinder] [gaussian|schulz]") |
---|
907 | print("But not for [yun sphere schulz], and vesicle & hollow_cylinder only with sasview.") |
---|
908 | print("Note this compares chosen source against internal python code here, with adjustment for known scale etc issues.") |
---|
909 | return |
---|
910 | comparison = COMPARISON[key] |
---|
911 | comparison() |
---|
912 | |
---|
913 | if __name__ == "__main__": |
---|
914 | main() |
---|