[3f818b2] | 1 | from __future__ import division, print_function |
---|
| 2 | # Make sasmodels available on the path |
---|
| 3 | import sys, os |
---|
| 4 | BETA_DIR = os.path.dirname(os.path.realpath(__file__)) |
---|
| 5 | SASMODELS_DIR = os.path.dirname(os.path.dirname(BETA_DIR)) |
---|
| 6 | sys.path.insert(0, SASMODELS_DIR) |
---|
| 7 | |
---|
| 8 | from collections import namedtuple |
---|
| 9 | |
---|
| 10 | from matplotlib import pyplot as plt |
---|
| 11 | import numpy as np |
---|
| 12 | from numpy import pi, sin, cos, sqrt, fabs |
---|
| 13 | from numpy.polynomial.legendre import leggauss |
---|
| 14 | from scipy.special import j1 as J1 |
---|
| 15 | from numpy import inf |
---|
| 16 | from scipy.special import gammaln # type: ignore |
---|
| 17 | |
---|
| 18 | Theory = namedtuple('Theory', 'Q F1 F2 P S I Seff Ibeta') |
---|
| 19 | Theory.__new__.__defaults__ = (None,) * len(Theory._fields) |
---|
| 20 | |
---|
| 21 | #Used to calculate F(q) for the cylinder, sphere, ellipsoid models |
---|
| 22 | # RKH adding vesicle and hollow_cylinder to test sasview special cases of ER and VR |
---|
[5d40d0c] | 23 | # BEWARE there are issues here if you run this from python3 (i.e. qt5 version of sasview), so do "source activate sasview" |
---|
[3f818b2] | 24 | def sas_sinx_x(x): |
---|
| 25 | with np.errstate(all='ignore'): |
---|
| 26 | retvalue = sin(x)/x |
---|
| 27 | retvalue[x == 0.] = 1. |
---|
| 28 | return retvalue |
---|
| 29 | |
---|
| 30 | def sas_2J1x_x(x): |
---|
| 31 | with np.errstate(all='ignore'): |
---|
| 32 | retvalue = 2*J1(x)/x |
---|
| 33 | retvalue[x == 0] = 1. |
---|
| 34 | return retvalue |
---|
| 35 | |
---|
| 36 | def sas_3j1x_x(x): |
---|
| 37 | """return 3*j1(x)/x""" |
---|
| 38 | retvalue = np.empty_like(x) |
---|
| 39 | with np.errstate(all='ignore'): |
---|
| 40 | # GSL bessel_j1 taylor expansion |
---|
| 41 | index = (x < 0.25) |
---|
| 42 | y = x[index]**2 |
---|
| 43 | c1 = -1.0/10.0 |
---|
| 44 | c2 = +1.0/280.0 |
---|
| 45 | c3 = -1.0/15120.0 |
---|
| 46 | c4 = +1.0/1330560.0 |
---|
| 47 | c5 = -1.0/172972800.0 |
---|
| 48 | retvalue[index] = 1.0 + y*(c1 + y*(c2 + y*(c3 + y*(c4 + y*c5)))) |
---|
| 49 | index = ~index |
---|
| 50 | y = x[index] |
---|
| 51 | retvalue[index] = 3*(sin(y) - y*cos(y))/y**3 |
---|
| 52 | retvalue[x == 0.] = 1. |
---|
| 53 | return retvalue |
---|
| 54 | |
---|
| 55 | #Used to cross check my models with sasview models |
---|
| 56 | def build_model(model_name, q, **pars): |
---|
| 57 | from sasmodels.core import load_model_info, build_model as build_sasmodel |
---|
| 58 | from sasmodels.data import empty_data1D |
---|
| 59 | from sasmodels.direct_model import DirectModel |
---|
| 60 | model_info = load_model_info(model_name) |
---|
| 61 | model = build_sasmodel(model_info, dtype='double!') |
---|
| 62 | data = empty_data1D(q) |
---|
| 63 | calculator = DirectModel(data, model,cutoff=0) |
---|
| 64 | calculator.pars = pars.copy() |
---|
| 65 | calculator.pars.setdefault('background', 0) |
---|
| 66 | return calculator |
---|
| 67 | |
---|
| 68 | #gives the hardsphere structure factor that sasview uses |
---|
| 69 | def _hardsphere_simple(q, radius_effective, volfraction): |
---|
| 70 | CUTOFFHS = 0.05 |
---|
| 71 | if fabs(radius_effective) < 1.E-12: |
---|
| 72 | HARDSPH = 1.0 |
---|
| 73 | return HARDSPH |
---|
| 74 | X = 1.0/(1.0 -volfraction) |
---|
| 75 | D = X*X |
---|
| 76 | A = (1.+2.*volfraction)*D |
---|
| 77 | A *= A |
---|
| 78 | X = fabs(q*radius_effective*2.0) |
---|
| 79 | if X < 5.E-06: |
---|
| 80 | HARDSPH = 1./A |
---|
| 81 | return HARDSPH |
---|
| 82 | X2 = X*X |
---|
| 83 | B = (1.0 +0.5*volfraction)*D |
---|
| 84 | B *= B |
---|
| 85 | B *= -6.*volfraction |
---|
| 86 | G = 0.5*volfraction*A |
---|
| 87 | if X < CUTOFFHS: |
---|
| 88 | FF = 8.0*A +6.0*B + 4.0*G + ( -0.8*A -B/1.5 -0.5*G +(A/35. +0.0125*B +0.02*G)*X2)*X2 |
---|
| 89 | HARDSPH = 1./(1. + volfraction*FF ) |
---|
| 90 | return HARDSPH |
---|
| 91 | X4 = X2*X2 |
---|
| 92 | S, C = sin(X), cos(X) |
---|
| 93 | FF = ((G*( (4.*X2 -24.)*X*S -(X4 -12.*X2 +24.)*C +24. )/X2 + B*(2.*X*S -(X2-2.)*C -2.) )/X + A*(S-X*C))/X |
---|
| 94 | HARDSPH = 1./(1. + 24.*volfraction*FF/X2) |
---|
| 95 | return HARDSPH |
---|
| 96 | |
---|
| 97 | def hardsphere_simple(q, radius_effective, volfraction): |
---|
| 98 | SQ = [_hardsphere_simple(qk, radius_effective, volfraction) for qk in q] |
---|
| 99 | return np.array(SQ) |
---|
| 100 | |
---|
| 101 | #Used in gaussian quadrature for polydispersity |
---|
| 102 | #returns values and the probability of those values based on gaussian distribution |
---|
| 103 | N_GAUSS = 35 |
---|
| 104 | NSIGMA_GAUSS = 3 |
---|
| 105 | def gaussian_distribution(center, sigma, lb, ub): |
---|
| 106 | #3 standard deviations covers approx. 99.7% |
---|
| 107 | if sigma != 0: |
---|
| 108 | nsigmas = NSIGMA_GAUSS |
---|
| 109 | x = np.linspace(center-sigma*nsigmas, center+sigma*nsigmas, num=N_GAUSS) |
---|
| 110 | x = x[(x >= lb) & (x <= ub)] |
---|
| 111 | px = np.exp((x-center)**2 / (-2.0 * sigma * sigma)) |
---|
| 112 | return x, px |
---|
| 113 | else: |
---|
| 114 | return np.array([center]), np.array([1]) |
---|
| 115 | |
---|
| 116 | N_SCHULZ = 80 |
---|
| 117 | NSIGMA_SCHULZ = 8 |
---|
| 118 | def schulz_distribution(center, sigma, lb, ub): |
---|
| 119 | if sigma != 0: |
---|
| 120 | nsigmas = NSIGMA_SCHULZ |
---|
| 121 | x = np.linspace(center-sigma*nsigmas, center+sigma*nsigmas, num=N_SCHULZ) |
---|
| 122 | x = x[(x >= lb) & (x <= ub)] |
---|
| 123 | R = x/center |
---|
| 124 | z = (center/sigma)**2 |
---|
| 125 | arg = z*np.log(z) + (z-1)*np.log(R) - R*z - np.log(center) - gammaln(z) |
---|
| 126 | px = np.exp(arg) |
---|
| 127 | return x, px |
---|
| 128 | else: |
---|
| 129 | return np.array([center]), np.array([1]) |
---|
| 130 | |
---|
| 131 | #returns the effective radius used in sasview |
---|
| 132 | def ER_ellipsoid(radius_polar, radius_equatorial): |
---|
| 133 | ee = np.empty_like(radius_polar) |
---|
| 134 | if radius_polar > radius_equatorial: |
---|
| 135 | ee = (radius_polar**2 - radius_equatorial**2)/radius_polar**2 |
---|
| 136 | elif radius_polar < radius_equatorial: |
---|
| 137 | ee = (radius_equatorial**2 - radius_polar**2) / radius_equatorial**2 |
---|
| 138 | else: |
---|
| 139 | ee = 2*radius_polar |
---|
| 140 | if radius_polar * radius_equatorial != 0: |
---|
| 141 | bd = 1.0 - ee |
---|
| 142 | e1 = np.sqrt(ee) |
---|
| 143 | b1 = 1.0 + np.arcsin(e1) / (e1*np.sqrt(bd)) |
---|
| 144 | bL = (1.0 + e1) / (1.0 - e1) |
---|
| 145 | b2 = 1.0 + bd / 2 / e1 * np.log(bL) |
---|
| 146 | delta = 0.75 * b1 * b2 |
---|
| 147 | ddd = np.zeros_like(radius_polar) |
---|
| 148 | ddd = 2.0*(delta + 1.0)*radius_polar*radius_equatorial**2 |
---|
| 149 | return 0.5*ddd**(1.0 / 3.0) |
---|
| 150 | |
---|
| 151 | def ellipsoid_volume(radius_polar, radius_equatorial): |
---|
| 152 | volume = (4./3.)*pi*radius_polar*radius_equatorial**2 |
---|
| 153 | return volume |
---|
| 154 | |
---|
| 155 | # F1 is F(q) |
---|
| 156 | # F2 is F(g)^2 |
---|
| 157 | #IQM is I(q) with monodispersity |
---|
| 158 | #IQSM is I(q) with structure factor S(q) and monodispersity |
---|
| 159 | #IQBM is I(q) with Beta Approximation and monodispersity |
---|
| 160 | #SQ is monodisperse approach for structure factor |
---|
| 161 | #SQ_EFF is the effective structure factor from beta approx |
---|
| 162 | def ellipsoid_theta(q, radius_polar, radius_equatorial, sld, sld_solvent, |
---|
| 163 | volfraction=0, radius_effective=None): |
---|
| 164 | #creates values z and corresponding probabilities w from legendre-gauss quadrature |
---|
| 165 | volume = ellipsoid_volume(radius_polar, radius_equatorial) |
---|
| 166 | z, w = leggauss(76) |
---|
| 167 | F1 = np.zeros_like(q) |
---|
| 168 | F2 = np.zeros_like(q) |
---|
| 169 | #use a u subsition(u=cos) and then u=(z+1)/2 to change integration from |
---|
| 170 | #0->2pi with respect to alpha to -1->1 with respect to z, allowing us to use |
---|
| 171 | #legendre-gauss quadrature |
---|
| 172 | for k, qk in enumerate(q): |
---|
| 173 | r = sqrt(radius_equatorial**2*(1-((z+1)/2)**2)+radius_polar**2*((z+1)/2)**2) |
---|
| 174 | form = (sld-sld_solvent)*volume*sas_3j1x_x(qk*r) |
---|
| 175 | F2[k] = np.sum(w*form**2) |
---|
| 176 | F1[k] = np.sum(w*form) |
---|
| 177 | #the 1/2 comes from the change of variables mentioned above |
---|
| 178 | F2 = F2/2.0 |
---|
| 179 | F1 = F1/2.0 |
---|
| 180 | if radius_effective is None: |
---|
| 181 | radius_effective = ER_ellipsoid(radius_polar,radius_equatorial) |
---|
| 182 | SQ = hardsphere_simple(q, radius_effective, volfraction) |
---|
| 183 | SQ_EFF = 1 + F1**2/F2*(SQ - 1) |
---|
| 184 | IQM = 1e-4*F2/volume |
---|
| 185 | IQSM = volfraction*IQM*SQ |
---|
| 186 | IQBM = volfraction*IQM*SQ_EFF |
---|
| 187 | return Theory(Q=q, F1=F1, F2=F2, P=IQM, S=SQ, I=IQSM, Seff=SQ_EFF, Ibeta=IQBM) |
---|
| 188 | |
---|
| 189 | #IQD is I(q) polydispursed, IQSD is I(q)S(q) polydispursed, etc. |
---|
| 190 | #IQBD HAS NOT BEEN CROSS CHECKED AT ALL |
---|
| 191 | def ellipsoid_pe(q, radius_polar, radius_equatorial, sld, sld_solvent, |
---|
| 192 | radius_polar_pd=0.1, radius_equatorial_pd=0.1, |
---|
| 193 | radius_polar_pd_type='gaussian', |
---|
| 194 | radius_equatorial_pd_type='gaussian', |
---|
| 195 | volfraction=0, radius_effective=None, |
---|
| 196 | background=0, scale=1, |
---|
| 197 | norm='sasview'): |
---|
| 198 | if norm not in ['sasview', 'sasfit', 'yun']: |
---|
| 199 | raise TypeError("unknown norm "+norm) |
---|
| 200 | if radius_polar_pd_type == 'gaussian': |
---|
| 201 | Rp_val, Rp_prob = gaussian_distribution(radius_polar, radius_polar_pd*radius_polar, 0, inf) |
---|
| 202 | elif radius_polar_pd_type == 'schulz': |
---|
| 203 | Rp_val, Rp_prob = schulz_distribution(radius_polar, radius_polar_pd*radius_polar, 0, inf) |
---|
| 204 | if radius_equatorial_pd_type == 'gaussian': |
---|
| 205 | Re_val, Re_prob = gaussian_distribution(radius_equatorial, radius_equatorial_pd*radius_equatorial, 0, inf) |
---|
| 206 | elif radius_equatorial_pd_type == 'schulz': |
---|
| 207 | Re_val, Re_prob = schulz_distribution(radius_equatorial, radius_equatorial_pd*radius_equatorial, 0, inf) |
---|
| 208 | total_weight = total_volume = 0 |
---|
| 209 | radius_eff = 0 |
---|
| 210 | F1, F2 = np.zeros_like(q), np.zeros_like(q) |
---|
| 211 | for k, Rpk in enumerate(Rp_val): |
---|
| 212 | print("ellipsoid cycle", k, "of", len(Rp_val)) |
---|
| 213 | for i, Rei in enumerate(Re_val): |
---|
| 214 | theory = ellipsoid_theta(q, Rpk, Rei, sld, sld_solvent) |
---|
| 215 | volume = ellipsoid_volume(Rpk, Rei) |
---|
| 216 | weight = Rp_prob[k]*Re_prob[i] |
---|
| 217 | total_weight += weight |
---|
| 218 | total_volume += weight*volume |
---|
| 219 | F1 += theory.F1*weight |
---|
| 220 | F2 += theory.F2*weight |
---|
| 221 | radius_eff += weight*ER_ellipsoid(Rpk, Rei) |
---|
| 222 | F1 /= total_weight |
---|
| 223 | F2 /= total_weight |
---|
| 224 | average_volume = total_volume/total_weight |
---|
| 225 | if radius_effective is None: |
---|
| 226 | radius_effective = radius_eff/total_weight |
---|
| 227 | if norm == 'sasfit': |
---|
| 228 | IQD = F2 |
---|
| 229 | elif norm == 'sasview': |
---|
| 230 | # Note: internally, sasview uses F2/total_volume because: |
---|
| 231 | # average_volume = total_volume/total_weight |
---|
| 232 | # F2/total_weight / average_volume |
---|
| 233 | # = F2/total_weight / total_volume/total_weight |
---|
| 234 | # = F2/total_volume |
---|
| 235 | IQD = F2/average_volume*1e-4*volfraction |
---|
| 236 | F1 *= 1e-2 # Yun is using sld in 1/A^2, not 1e-6/A^2 |
---|
| 237 | F2 *= 1e-4 |
---|
| 238 | elif norm == 'yun': |
---|
| 239 | F1 *= 1e-6 # Yun is using sld in 1/A^2, not 1e-6/A^2 |
---|
| 240 | F2 *= 1e-12 |
---|
| 241 | IQD = F2/average_volume*1e8*volfraction |
---|
| 242 | SQ = hardsphere_simple(q, radius_effective, volfraction) |
---|
| 243 | beta = F1**2/F2 |
---|
| 244 | SQ_EFF = 1 + beta*(SQ - 1) |
---|
| 245 | IQSD = IQD*SQ |
---|
| 246 | IQBD = IQD*SQ_EFF |
---|
| 247 | return Theory(Q=q, F1=F1, F2=F2, P=IQD, S=SQ, I=IQSD, Seff=SQ_EFF, Ibeta=IQBD) |
---|
| 248 | |
---|
| 249 | #polydispersity for sphere |
---|
| 250 | def sphere_r(q,radius,sld,sld_solvent, |
---|
| 251 | radius_pd=0.1, radius_pd_type='gaussian', |
---|
| 252 | volfraction=0, radius_effective=None, |
---|
| 253 | background=0, scale=1, |
---|
| 254 | norm='sasview'): |
---|
| 255 | if norm not in ['sasview', 'sasfit', 'yun']: |
---|
| 256 | raise TypeError("unknown norm "+norm) |
---|
| 257 | if radius_pd_type == 'gaussian': |
---|
| 258 | radius_val, radius_prob = gaussian_distribution(radius, radius_pd*radius, 0, inf) |
---|
| 259 | elif radius_pd_type == 'schulz': |
---|
| 260 | radius_val, radius_prob = schulz_distribution(radius, radius_pd*radius, 0, inf) |
---|
| 261 | total_weight = total_volume = 0 |
---|
| 262 | F1 = np.zeros_like(q) |
---|
| 263 | F2 = np.zeros_like(q) |
---|
| 264 | for k, rk in enumerate(radius_val): |
---|
| 265 | volume = 4./3.*pi*rk**3 |
---|
| 266 | total_weight += radius_prob[k] |
---|
| 267 | total_volume += radius_prob[k]*volume |
---|
| 268 | form = (sld-sld_solvent)*volume*sas_3j1x_x(q*rk) |
---|
| 269 | F2 += radius_prob[k]*form**2 |
---|
| 270 | F1 += radius_prob[k]*form |
---|
| 271 | F1 /= total_weight |
---|
| 272 | F2 /= total_weight |
---|
| 273 | average_volume = total_volume/total_weight |
---|
| 274 | |
---|
| 275 | if radius_effective is None: |
---|
| 276 | radius_effective = radius |
---|
| 277 | print("radius_effective ",radius_effective) |
---|
| 278 | average_volume = total_volume/total_weight |
---|
| 279 | if norm == 'sasfit': |
---|
| 280 | IQD = F2 |
---|
| 281 | elif norm == 'sasview': |
---|
| 282 | IQD = F2/average_volume*1e-4*volfraction |
---|
| 283 | elif norm == 'yun': |
---|
| 284 | F1 *= 1e-6 # Yun is using sld in 1/A^2, not 1e-6/A^2 |
---|
| 285 | F2 *= 1e-12 |
---|
| 286 | IQD = F2/average_volume*1e8*volfraction |
---|
| 287 | SQ = hardsphere_simple(q, radius_effective, volfraction) |
---|
| 288 | beta = F1**2/F2 |
---|
| 289 | SQ_EFF = 1 + beta*(SQ - 1) |
---|
| 290 | IQSD = IQD*SQ |
---|
| 291 | IQBD = IQD*SQ_EFF |
---|
| 292 | return Theory(Q=q, F1=F1, F2=F2, P=IQD, S=SQ, I=IQSD, Seff=SQ_EFF, Ibeta=IQBD) |
---|
| 293 | |
---|
| 294 | #polydispersity for vesicle |
---|
| 295 | def vesicle_pe(q,radius=20, thickness=10, sld=4, sld_solvent=1, volfraction=0.03, |
---|
| 296 | radius_pd=0.1, thickness_pd=0.2, radius_pd_type="gaussian", thickness_pd_type="gaussian", |
---|
| 297 | radius_effective=None, background=0, scale=1, |
---|
| 298 | norm='sasview'): |
---|
| 299 | if norm not in ['sasview', 'sasfit', 'yun']: |
---|
| 300 | raise TypeError("unknown norm "+norm) |
---|
| 301 | if radius_pd_type == 'gaussian': |
---|
| 302 | R_val, R_prob = gaussian_distribution(radius, radius_pd*radius, 0, inf) |
---|
| 303 | elif radius_pd_type == 'schulz': |
---|
| 304 | R_val, R_prob = schulz_distribution(radius, radius_pd*radius, 0, inf) |
---|
| 305 | if thickness_pd_type == 'gaussian': |
---|
| 306 | T_val, T_prob = gaussian_distribution(thickness, thickness_pd*thickness, 0, inf) |
---|
| 307 | elif thickness_pd_type == 'schulz': |
---|
| 308 | T_val, T_prob = schulz_distribution(thickness, thickness_pd*thickness, 0, inf) |
---|
| 309 | total_weight = total_volume = total_shell = 0 |
---|
| 310 | radius_eff = 0 |
---|
| 311 | F1, F2 = np.zeros_like(q), np.zeros_like(q) |
---|
| 312 | for k, Rk in enumerate(R_val): |
---|
| 313 | print("vesicle cycle", k, "of", len(R_val)," Rk ",Rk) |
---|
| 314 | volume_in = 4./3.*pi*Rk**3 |
---|
| 315 | form_in = (sld-sld_solvent)*volume_in*sas_3j1x_x(q*Rk) |
---|
| 316 | for i, Ti in enumerate(T_val): |
---|
| 317 | Rout = Rk + Ti |
---|
| 318 | volume_out = 4./3.*pi*Rout**3 |
---|
| 319 | form_out = (sld-sld_solvent)*volume_out*sas_3j1x_x(q*Rout) |
---|
| 320 | form = form_out - form_in |
---|
| 321 | volume = volume_out - volume_in |
---|
| 322 | weight = R_prob[k]*T_prob[i] |
---|
| 323 | total_weight += weight |
---|
| 324 | total_shell += weight*volume |
---|
| 325 | total_volume += weight*volume_out |
---|
| 326 | F1 += form*weight |
---|
| 327 | F2 += form**2*weight |
---|
| 328 | radius_eff += weight*Rout |
---|
| 329 | F1 /= total_weight |
---|
| 330 | F2 /= total_weight |
---|
| 331 | average_volume = total_volume/total_weight |
---|
| 332 | if radius_effective is None: |
---|
| 333 | radius_effective = radius_eff/total_weight |
---|
| 334 | print("radius_effective ",radius_effective) |
---|
| 335 | if norm == 'sasfit': |
---|
| 336 | IQD = F2 |
---|
| 337 | elif norm == 'sasview': |
---|
| 338 | # Note: internally, sasview uses F2/total_volume because: |
---|
| 339 | # average_volume = total_volume/total_weight |
---|
| 340 | # F2/total_weight / average_volume |
---|
| 341 | # = F2/total_weight / total_volume/total_weight |
---|
| 342 | # = F2/total_volume |
---|
| 343 | IQD = F2/average_volume*1e-4*volfraction |
---|
| 344 | F1 *= 1e-2 # Yun is using sld in 1/A^2, not 1e-6/A^2 |
---|
| 345 | F2 *= 1e-4 |
---|
| 346 | elif norm == 'yun': |
---|
| 347 | F1 *= 1e-6 # Yun is using sld in 1/A^2, not 1e-6/A^2 |
---|
| 348 | F2 *= 1e-12 |
---|
| 349 | IQD = F2/average_volume*1e8*volfraction |
---|
| 350 | # RKH SORT THIS OUT WHEN HAVE NEW MODEL |
---|
| 351 | vfff=volfraction*(30./20.)**3 |
---|
| 352 | print("radius_effective, fudged volfaction for S(Q) ",radius_effective,vfff) |
---|
| 353 | SQ = hardsphere_simple(q, radius_effective, vfff) |
---|
| 354 | beta = F1**2/F2 |
---|
| 355 | SQ_EFF = 1 + beta*(SQ - 1) |
---|
| 356 | IQSD = IQD*SQ |
---|
| 357 | IQBD = IQD*SQ_EFF |
---|
| 358 | return Theory(Q=q, F1=F1, F2=F2, P=IQD, S=SQ, I=IQSD, Seff=SQ_EFF, Ibeta=IQBD) |
---|
| 359 | # |
---|
| 360 | #polydispersity for hollow_cylinder |
---|
| 361 | def hollow_cylinder_pe(q,radius=20, thickness=10, sld=4, sld_solvent=1, volfraction=0.15, |
---|
| 362 | radius_pd=0.1, thickness_pd=0.2, length_pd=0.05, radius_pd_type="gaussian", thickness_pd_type="gaussian", |
---|
| 363 | radius_effective=None, background=0, scale=1, |
---|
| 364 | norm='sasview'): |
---|
| 365 | if norm not in ['sasview', 'sasfit', 'yun']: |
---|
| 366 | raise TypeError("unknown norm "+norm) |
---|
| 367 | if radius_pd_type == 'gaussian': |
---|
| 368 | R_val, R_prob = gaussian_distribution(radius, radius_pd*radius, 0, inf) |
---|
| 369 | elif radius_pd_type == 'schulz': |
---|
| 370 | R_val, R_prob = schulz_distribution(radius, radius_pd*radius, 0, inf) |
---|
| 371 | if thickness_pd_type == 'gaussian': |
---|
| 372 | T_val, T_prob = gaussian_distribution(thickness, thickness_pd*thickness, 0, inf) |
---|
| 373 | elif thickness_pd_type == 'schulz': |
---|
| 374 | T_val, T_prob = schulz_distribution(thickness, thickness_pd*thickness, 0, inf) |
---|
| 375 | if length_pd_type == 'gaussian': |
---|
| 376 | T_val, T_prob = gaussian_distribution(length, length_pd*length, 0, inf) |
---|
| 377 | elif length_pd_type == 'schulz': |
---|
| 378 | L_val, L_prob = schulz_distribution(length, length_pd*length, 0, inf) |
---|
| 379 | total_weight = total_volume = total_shell = 0 |
---|
| 380 | radius_eff = 0 |
---|
| 381 | F1, F2 = np.zeros_like(q), np.zeros_like(q) |
---|
| 382 | for k, Rk in enumerate(R_val): |
---|
| 383 | print("hollow_cylinder cycle", k, "of", len(R_val)," Rk ",Rk) |
---|
| 384 | for i, Ti in enumerate(T_val): |
---|
| 385 | for j, Lj in enumerate(L_val): |
---|
| 386 | Rout = Rk + Ti |
---|
| 387 | volume_out = pi*Rout**2*Lj |
---|
| 388 | volume_in = pi*Rk**2*Lj |
---|
| 389 | volume = volume_out - volume_in |
---|
| 390 | theory = hollow_cylinder_theta(q, Rk, Ti, Lj, sld, sld_solvent, |
---|
| 391 | volfraction=0, radius_effective=None) |
---|
| 392 | weight = R_prob[k]*T_prob[i]*L_prob[j] |
---|
| 393 | total_weight += weight |
---|
| 394 | total_shell += weight*volume |
---|
| 395 | total_volume += weight*volume_out |
---|
| 396 | F1 += theory.F1*weight |
---|
| 397 | F2 += theory.F2*weight |
---|
| 398 | radius_eff += weight*ER_hollow_cylinder(radius, thickness, length) |
---|
| 399 | F1 /= total_weight |
---|
| 400 | F2 /= total_weight |
---|
| 401 | average_volume = total_volume/total_weight |
---|
| 402 | if radius_effective is None: |
---|
| 403 | radius_effective = radius_eff/total_weight |
---|
| 404 | print("radius_effective ",radius_effective) |
---|
| 405 | if norm == 'sasfit': |
---|
| 406 | IQD = F2 |
---|
| 407 | elif norm == 'sasview': |
---|
| 408 | # Note: internally, sasview uses F2/total_volume because: |
---|
| 409 | # average_volume = total_volume/total_weight |
---|
| 410 | # F2/total_weight / average_volume |
---|
| 411 | # = F2/total_weight / total_volume/total_weight |
---|
| 412 | # = F2/total_volume |
---|
| 413 | IQD = F2/average_volume*1e-4*volfraction |
---|
| 414 | F1 *= 1e-2 # Yun is using sld in 1/A^2, not 1e-6/A^2 |
---|
| 415 | F2 *= 1e-4 |
---|
| 416 | elif norm == 'yun': |
---|
| 417 | F1 *= 1e-6 # Yun is using sld in 1/A^2, not 1e-6/A^2 |
---|
| 418 | F2 *= 1e-12 |
---|
| 419 | IQD = F2/average_volume*1e8*volfraction |
---|
| 420 | # RKH SORT THIS OUT WHEN HAVE NEW MODEL |
---|
| 421 | vfff=volfraction |
---|
| 422 | print("radius_effective, volfaction for S(Q) ",radius_effective,vfff) |
---|
| 423 | SQ = hardsphere_simple(q, radius_effective, vfff) |
---|
| 424 | beta = F1**2/F2 |
---|
| 425 | SQ_EFF = 1 + beta*(SQ - 1) |
---|
| 426 | IQSD = IQD*SQ |
---|
| 427 | IQBD = IQD*SQ_EFF |
---|
| 428 | return Theory(Q=q, F1=F1, F2=F2, P=IQD, S=SQ, I=IQSD, Seff=SQ_EFF, Ibeta=IQBD) |
---|
| 429 | |
---|
| 430 | # RKH copying Paul K's ellipsoid here, this computes everything for monodisperse case |
---|
| 431 | # and supplies partial results for polydisperse case. |
---|
| 432 | def hollow_cylinder_theta(q, radius, thickness, length, sld, sld_solvent, |
---|
| 433 | volfraction=0, radius_effective=None): |
---|
| 434 | #creates values z and corresponding probabilities w from legendre-gauss quadrature |
---|
| 435 | z, w = leggauss(76) |
---|
| 436 | F1 = np.zeros_like(q) |
---|
| 437 | F2 = np.zeros_like(q) |
---|
| 438 | #use a u subsition(u=cos) and then u=(z+1)/2 to change integration from |
---|
| 439 | #0->2pi with respect to alpha to -1->1 with respect to z, allowing us to use |
---|
| 440 | #legendre-gauss quadrature |
---|
| 441 | lower = 0.0 |
---|
| 442 | upper = 1.0 |
---|
| 443 | gamma_sq = (radius/(radius+thickness))**2 |
---|
| 444 | for k, qk in enumerate(q): |
---|
| 445 | for i, zt in enumerate(z): |
---|
| 446 | # quadrature loop |
---|
| 447 | cos_theta = 0.5*( zt* (upper-lower) + lower + upper ) |
---|
| 448 | sin_theta = sqrt(1.0 - cos_theta*cos_theta) |
---|
| 449 | aaa=(radius+thickness)*qk*sin_theta |
---|
| 450 | ## sas_J1 expects an array, so try direct use of J1 |
---|
| 451 | lam1 = J1(aaa)/aaa |
---|
| 452 | aaa=radius*qk*sin_theta |
---|
| 453 | lam2 = J1(aaa)/aaa |
---|
| 454 | psi = (lam1 - gamma_sq*lam2)/(1.0 - gamma_sq) |
---|
| 455 | #Note: lim_{thickness -> 0} psi = sas_J0(radius*qab) |
---|
| 456 | #Note: lim_{radius -> 0} psi = sas_2J1x_x(thickness*qab) |
---|
| 457 | aaa=0.5*length*qk*cos_theta |
---|
| 458 | t2 = sin(aaa)/aaa |
---|
| 459 | # t2 = sas_sinx_x(0.5*length*qk*cos_theta) |
---|
| 460 | form = psi*t2 |
---|
| 461 | F1[i] += w[i] * form |
---|
| 462 | F2[i] += w[i] * form * form |
---|
| 463 | volume = pi*((radius + thickness)**2 - radius**2)*length |
---|
| 464 | s = (sld - sld_solvent) * volume |
---|
| 465 | F2 = F2*s*(upper - lower)/2.0 |
---|
| 466 | F1 = F1*s*s*(upper - lower)/2.0 |
---|
| 467 | if radius_effective is None: |
---|
| 468 | radius_effective = ER_hollow_cylinder(radius, thickness, length) |
---|
| 469 | SQ = hardsphere_simple(q, radius_effective, volfraction) |
---|
| 470 | SQ_EFF = 1 + F1**2/F2*(SQ - 1) |
---|
| 471 | IQM = 1e-4*F2/volume |
---|
| 472 | IQSM = volfraction*IQM*SQ |
---|
| 473 | IQBM = volfraction*IQM*SQ_EFF |
---|
| 474 | return Theory(Q=q, F1=F1, F2=F2, P=IQM, S=SQ, I=IQSM, Seff=SQ_EFF, Ibeta=IQBM) |
---|
| 475 | # |
---|
| 476 | def ER_hollow_cylinder(radius, thickness, length): |
---|
| 477 | """ |
---|
| 478 | :param radius: Cylinder core radius |
---|
| 479 | :param thickness: Cylinder wall thickness |
---|
| 480 | :param length: Cylinder length |
---|
| 481 | :return: Effective radius |
---|
| 482 | """ |
---|
| 483 | router = radius + thickness |
---|
| 484 | if router == 0 or length == 0: |
---|
| 485 | return 0.0 |
---|
| 486 | len1 = router |
---|
| 487 | len2 = length/2.0 |
---|
| 488 | term1 = len1*len1*2.0*len2/2.0 |
---|
| 489 | term2 = 1.0 + (len2/len1)*(1.0 + 1/len2/2.0)*(1.0 + pi*len1/len2/2.0) |
---|
| 490 | ddd = 3.0*term1*term2 |
---|
| 491 | diam = pow(ddd, (1.0/3.0)) |
---|
| 492 | return diam |
---|
| 493 | |
---|
| 494 | ############################################################################### |
---|
| 495 | ############################################################################### |
---|
| 496 | ############################################################################### |
---|
| 497 | ################## ################## |
---|
| 498 | ################## TESTS ################## |
---|
| 499 | ################## ################## |
---|
| 500 | ############################################################################### |
---|
| 501 | ############################################################################### |
---|
| 502 | ############################################################################### |
---|
| 503 | |
---|
| 504 | def popn(d, keys): |
---|
| 505 | """ |
---|
| 506 | Splits a dict into two, with any key of *d* which is in *keys* removed |
---|
| 507 | from *d* and added to *b*. Returns *b*. |
---|
| 508 | """ |
---|
| 509 | b = {} |
---|
| 510 | for k in keys: |
---|
| 511 | try: |
---|
| 512 | b[k] = d.pop(k) |
---|
| 513 | except KeyError: |
---|
| 514 | pass |
---|
| 515 | return b |
---|
| 516 | |
---|
| 517 | def sasmodels_theory(q, Pname, **pars): |
---|
| 518 | """ |
---|
| 519 | Call sasmodels to compute the model with and without a hard sphere |
---|
| 520 | structure factor. |
---|
| 521 | """ |
---|
| 522 | #mono_pars = {k: (0 if k.endswith('_pd') else v) for k, v in pars.items()} |
---|
| 523 | Ppars = pars.copy() |
---|
| 524 | Spars = popn(Ppars, ['radius_effective', 'volfraction']) |
---|
| 525 | Ipars = pars.copy() |
---|
| 526 | |
---|
| 527 | # Autofill npts and nsigmas for the given pd type |
---|
| 528 | for k, v in pars.items(): |
---|
| 529 | if k.endswith("_pd_type"): |
---|
| 530 | if v == "gaussian": |
---|
| 531 | n, nsigmas = N_GAUSS, NSIGMA_GAUSS |
---|
| 532 | elif v == "schulz": |
---|
| 533 | n, nsigmas = N_SCHULZ, NSIGMA_SCHULZ |
---|
| 534 | Ppars.setdefault(k.replace("_pd_type", "_pd_n"), n) |
---|
| 535 | Ppars.setdefault(k.replace("_pd_type", "_pd_nsigma"), nsigmas) |
---|
| 536 | Ipars.setdefault(k.replace("_pd_type", "_pd_n"), n) |
---|
| 537 | Ipars.setdefault(k.replace("_pd_type", "_pd_nsigma"), nsigmas) |
---|
| 538 | |
---|
| 539 | #Ppars['scale'] = Spars.get('volfraction', 1) |
---|
| 540 | P = build_model(Pname, q) |
---|
| 541 | S = build_model("hardsphere", q) |
---|
| 542 | I = build_model(Pname+"@hardsphere", q) |
---|
| 543 | Pq = P(**Ppars)*pars.get('volfraction', 1) |
---|
| 544 | Sq = S(**Spars) |
---|
| 545 | Iq = I(**Ipars) |
---|
| 546 | #Iq = Pq*Sq*pars.get('volfraction', 1) |
---|
| 547 | #Sq = Iq/Pq |
---|
| 548 | #Iq = None#= Sq = None |
---|
| 549 | r = dict(I._kernel.results()) |
---|
| 550 | #print(r) |
---|
| 551 | return Theory(Q=q, F1=None, F2=None, P=Pq, S=None, I=None, Seff=r["S_eff(Q)"], Ibeta=Iq) |
---|
| 552 | |
---|
| 553 | def compare(title, target, actual, fields='F1 F2 P S I Seff Ibeta'): |
---|
| 554 | """ |
---|
| 555 | Plot fields in common between target and actual, along with relative error. |
---|
| 556 | """ |
---|
| 557 | available = [s for s in fields.split() |
---|
| 558 | if getattr(target, s) is not None and getattr(actual, s) is not None] |
---|
| 559 | rows = len(available) |
---|
| 560 | for row, field in enumerate(available): |
---|
| 561 | Q = target.Q |
---|
| 562 | I1, I2 = getattr(target, field), getattr(actual, field) |
---|
| 563 | plt.subplot(rows, 2, 2*row+1) |
---|
| 564 | plt.loglog(Q, abs(I1), label="target "+field) |
---|
| 565 | plt.loglog(Q, abs(I2), label="value "+field) |
---|
| 566 | #plt.legend(loc="upper left", bbox_to_anchor=(1,1)) |
---|
| 567 | plt.legend(loc='lower left') |
---|
| 568 | plt.subplot(rows, 2, 2*row+2) |
---|
| 569 | plt.semilogx(Q, I2/I1 - 1, label="relative error") |
---|
| 570 | #plt.semilogx(Q, I1/I2 - 1, label="relative error") |
---|
| 571 | plt.tight_layout() |
---|
| 572 | plt.suptitle(title) |
---|
| 573 | plt.show() |
---|
| 574 | |
---|
| 575 | def data_file(name): |
---|
| 576 | return os.path.join(BETA_DIR, 'data_files', name) |
---|
| 577 | |
---|
| 578 | def load_sasfit(path): |
---|
| 579 | data = np.loadtxt(path, dtype=str, delimiter=';').T |
---|
[2586ab72] | 580 | data = np.vstack((list(map(float, v)) for v in data[0:2])) |
---|
[3f818b2] | 581 | return data |
---|
| 582 | |
---|
| 583 | COMPARISON = {} # Type: Dict[(str,str,str)] -> Callable[(), None] |
---|
| 584 | |
---|
| 585 | def compare_sasview_sphere(pd_type='schulz'): |
---|
| 586 | q = np.logspace(-5, 0, 250) |
---|
| 587 | model = 'sphere' |
---|
| 588 | pars = dict( |
---|
| 589 | radius=20, sld=4, sld_solvent=1, |
---|
| 590 | background=0, |
---|
| 591 | radius_pd=.1, radius_pd_type=pd_type, |
---|
| 592 | volfraction=0.15, |
---|
| 593 | radius_effective=12.59921049894873, # equivalent average sphere radius |
---|
| 594 | ) |
---|
| 595 | target = sasmodels_theory(q, model, effective_radius_mode=0, structure_factor_mode=1, **pars) |
---|
| 596 | actual = sphere_r(q, norm='sasview', **pars) |
---|
| 597 | title = " ".join(("sasmodels", model, pd_type)) |
---|
| 598 | compare(title, target, actual) |
---|
| 599 | COMPARISON[('sasview', 'sphere', 'gaussian')] = lambda: compare_sasview_sphere(pd_type='gaussian') |
---|
| 600 | COMPARISON[('sasview', 'sphere', 'schulz')] = lambda: compare_sasview_sphere(pd_type='schulz') |
---|
| 601 | |
---|
| 602 | |
---|
| 603 | def compare_sasview_vesicle(pd_type='gaussian'): |
---|
| 604 | q = np.logspace(-5, 0, 250) |
---|
| 605 | model = 'vesicle' |
---|
| 606 | print("F2 seems OK, but big issues with S(Q), wo work in progress") |
---|
| 607 | # NOTE parameers for vesicle model are soon to be changed to remove "volfraction" |
---|
| 608 | pars = dict( |
---|
| 609 | radius=20, thickness=10, sld=4, sld_solvent=1, volfraction=0.03, |
---|
| 610 | background=0, |
---|
| 611 | radius_pd=0.1, thickness_pd=0.0, radius_pd_type=pd_type, thickness_pd_type=pd_type |
---|
| 612 | #,radius_effective=12.59921049894873, # equivalent average sphere radius |
---|
| 613 | ) |
---|
| 614 | target = sasmodels_theory(q, model, effective_radius_mode=0, structure_factor_mode=1, **pars) |
---|
| 615 | actual = vesicle_pe(q, norm='sasview', **pars) |
---|
| 616 | title = " ".join(("sasmodels", model, pd_type)) |
---|
| 617 | compare(title, target, actual) |
---|
| 618 | COMPARISON[('sasview', 'vesicle', 'gaussian')] = lambda: compare_sasview_vesicle(pd_type='gaussian') |
---|
| 619 | COMPARISON[('sasview', 'vesicle', 'schulz')] = lambda: compare_sasview_vesicle(pd_type='schulz') |
---|
| 620 | |
---|
| 621 | def compare_sasview_hollow_cylinder(pd_type='gaussian'): |
---|
| 622 | q = np.logspace(-5, 0, 250) |
---|
| 623 | model = 'hollow_cylinder' |
---|
| 624 | print(model) |
---|
| 625 | print("just about works for monodisperse, polydisperse needs work") |
---|
| 626 | # NOTE parameters for hollow_cylinder model are soon to be changed to remove "volfraction" |
---|
| 627 | # setting all three pd to zero is OK |
---|
| 628 | pars = dict( |
---|
| 629 | radius=20, thickness=10, length=80, sld=4, sld_solvent=1, |
---|
| 630 | background=0, |
---|
| 631 | radius_pd=0.1, thickness_pd=0.0, length_pd=0.0, radius_pd_type=pd_type, thickness_pd_type=pd_type, length_pd_type=pd_type |
---|
| 632 | #,radius_effective=12.59921049894873, # equivalent average sphere radius |
---|
| 633 | ) |
---|
| 634 | target = sasmodels_theory(q, model, effective_radius_mode=0, structure_factor_mode=1, **pars) |
---|
| 635 | actual = hollow_cylinder_pe(q, norm='sasview', **pars) |
---|
| 636 | # RKH monodisp was OK, actual = hollow_cylinder_theta(q,radius=20, thickness=10, length=80, sld=4, sld_solvent=1 ) |
---|
| 637 | title = " ".join(("sasmodels", model, pd_type)) |
---|
| 638 | compare(title, target, actual) |
---|
| 639 | COMPARISON[('sasview', 'hollow_cylinder', 'gaussian')] = lambda: compare_sasview_hollow_cylinder(pd_type='gaussian') |
---|
| 640 | COMPARISON[('sasview', 'hollow_cylinder', 'schulz')] = lambda: compare_sasview_hollow_cylinder(pd_type='schulz') |
---|
| 641 | |
---|
| 642 | |
---|
| 643 | def compare_sasview_ellipsoid(pd_type='gaussian'): |
---|
| 644 | q = np.logspace(-5, 0, 50) |
---|
| 645 | model = 'ellipsoid' |
---|
| 646 | pars = dict( |
---|
| 647 | radius_polar=20, radius_equatorial=400, sld=4, sld_solvent=1, |
---|
| 648 | background=0, |
---|
| 649 | radius_polar_pd=0.1, radius_polar_pd_type=pd_type, |
---|
| 650 | radius_equatorial_pd=0.1, radius_equatorial_pd_type=pd_type, |
---|
| 651 | volfraction=0.15, |
---|
| 652 | radius_effective=270.7543927018, |
---|
| 653 | #radius_effective=12.59921049894873, |
---|
| 654 | ) |
---|
| 655 | target = sasmodels_theory(q, model, effective_radius_mode=0, structure_factor_mode=1, **pars) |
---|
| 656 | actual = ellipsoid_pe(q, norm='sasview', **pars) |
---|
| 657 | # RKH test actual = ellipsoid_theta(q, radius_polar=20, radius_equatorial=400, sld=4, sld_solvent=1, volfraction=0.15, radius_effective=270.) |
---|
| 658 | title = " ".join(("sasmodels", model, pd_type)) |
---|
| 659 | compare(title, target, actual) |
---|
| 660 | COMPARISON[('sasview', 'ellipsoid', 'gaussian')] = lambda: compare_sasview_ellipsoid(pd_type='gaussian') |
---|
| 661 | COMPARISON[('sasview', 'ellipsoid', 'schulz')] = lambda: compare_sasview_ellipsoid(pd_type='schulz') |
---|
| 662 | |
---|
| 663 | def compare_yun_ellipsoid_mono(): |
---|
| 664 | pars = { |
---|
| 665 | 'radius_polar': 20, 'radius_polar_pd': 0, 'radius_polar_pd_type': 'gaussian', |
---|
| 666 | 'radius_equatorial': 10, 'radius_equatorial_pd': 0, 'radius_equatorial_pd_type': 'gaussian', |
---|
| 667 | 'sld': 2, 'sld_solvent': 1, |
---|
| 668 | 'volfraction': 0.15, |
---|
| 669 | # Yun uses radius for same volume sphere for effective radius |
---|
| 670 | # whereas sasview uses the average curvature. |
---|
| 671 | 'radius_effective': 12.59921049894873, |
---|
| 672 | } |
---|
| 673 | |
---|
| 674 | data = np.loadtxt(data_file('yun_ellipsoid.dat'),skiprows=2).T |
---|
| 675 | Q = data[0] |
---|
| 676 | F1 = data[1] |
---|
| 677 | P = data[3]*pars['volfraction'] |
---|
| 678 | S = data[5] |
---|
| 679 | Seff = data[6] |
---|
| 680 | target = Theory(Q=Q, F1=F1, P=P, S=S, Seff=Seff) |
---|
| 681 | actual = ellipsoid_pe(Q, norm='yun', **pars) |
---|
| 682 | title = " ".join(("yun", "ellipsoid", "no pd")) |
---|
| 683 | #compare(title, target, actual, fields="P S I Seff Ibeta") |
---|
| 684 | compare(title, target, actual) |
---|
| 685 | COMPARISON[('yun', 'ellipsoid', 'gaussian')] = compare_yun_ellipsoid_mono |
---|
| 686 | COMPARISON[('yun', 'ellipsoid', 'schulz')] = compare_yun_ellipsoid_mono |
---|
| 687 | |
---|
| 688 | def compare_yun_sphere_gauss(): |
---|
| 689 | # Note: yun uses gauss limits from R0/10 to R0 + 5 sigma steps sigma/100 |
---|
| 690 | # With pd = 0.1, that's 14 sigma and 1400 points. |
---|
| 691 | pars = { |
---|
| 692 | 'radius': 20, 'radius_pd': 0.1, 'radius_pd_type': 'gaussian', |
---|
| 693 | 'sld': 6, 'sld_solvent': 0, |
---|
| 694 | 'volfraction': 0.1, |
---|
| 695 | } |
---|
| 696 | |
---|
| 697 | data = np.loadtxt(data_file('testPolydisperseGaussianSphere.dat'), skiprows=2).T |
---|
| 698 | Q = data[0] |
---|
| 699 | F1 = data[1] |
---|
| 700 | F2 = data[2] |
---|
| 701 | P = data[3] |
---|
| 702 | S = data[5] |
---|
| 703 | Seff = data[6] |
---|
| 704 | target = Theory(Q=Q, F1=F1, P=P, S=S, Seff=Seff) |
---|
| 705 | actual = sphere_r(Q, norm='yun', **pars) |
---|
| 706 | title = " ".join(("yun", "sphere", "10% dispersion 10% Vf")) |
---|
| 707 | compare(title, target, actual) |
---|
| 708 | data = np.loadtxt(data_file('testPolydisperseGaussianSphere2.dat'), skiprows=2).T |
---|
| 709 | pars.update(radius_pd=0.15) |
---|
| 710 | Q = data[0] |
---|
| 711 | F1 = data[1] |
---|
| 712 | F2 = data[2] |
---|
| 713 | P = data[3] |
---|
| 714 | S = data[5] |
---|
| 715 | Seff = data[6] |
---|
| 716 | target = Theory(Q=Q, F1=F1, P=P, S=S, Seff=Seff) |
---|
| 717 | actual = sphere_r(Q, norm='yun', **pars) |
---|
| 718 | title = " ".join(("yun", "sphere", "15% dispersion 10% Vf")) |
---|
| 719 | compare(title, target, actual) |
---|
| 720 | COMPARISON[('yun', 'sphere', 'gaussian')] = compare_yun_sphere_gauss |
---|
| 721 | |
---|
| 722 | |
---|
| 723 | def compare_sasfit_sphere_gauss(): |
---|
| 724 | #N=1,s=2,X0=20,distr radius R=20,eta_core=4,eta_solv=1,.3 |
---|
| 725 | pars = { |
---|
| 726 | 'radius': 20, 'radius_pd': 0.1, 'radius_pd_type': 'gaussian', |
---|
| 727 | 'sld': 4, 'sld_solvent': 1, |
---|
| 728 | 'volfraction': 0.3, |
---|
| 729 | } |
---|
| 730 | |
---|
| 731 | Q, IQ = load_sasfit(data_file('sasfit_sphere_IQD.txt')) |
---|
| 732 | Q, IQSD = load_sasfit(data_file('sasfit_sphere_IQSD.txt')) |
---|
| 733 | Q, IQBD = load_sasfit(data_file('sasfit_sphere_IQBD.txt')) |
---|
| 734 | Q, SQ = load_sasfit(data_file('sasfit_polydisperse_sphere_sq.txt')) |
---|
| 735 | Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_sphere_sqeff.txt')) |
---|
| 736 | target = Theory(Q=Q, F1=None, F2=None, P=IQ, S=SQ, I=IQSD, Seff=SQ_EFF, Ibeta=IQBD) |
---|
| 737 | actual = sphere_r(Q, norm="sasfit", **pars) |
---|
| 738 | title = " ".join(("sasfit", "sphere", "pd=10% gaussian")) |
---|
| 739 | compare(title, target, actual) |
---|
| 740 | #compare(title, target, actual, fields="P") |
---|
| 741 | COMPARISON[('sasfit', 'sphere', 'gaussian')] = compare_sasfit_sphere_gauss |
---|
| 742 | |
---|
| 743 | def compare_sasfit_sphere_schulz(): |
---|
| 744 | #radius=20,sld=4,sld_solvent=1,volfraction=0.3,radius_pd=0.1 |
---|
| 745 | #We have scaled the output from sasfit by 1e-4*volume*volfraction |
---|
| 746 | #0.10050378152592121 |
---|
| 747 | pars = { |
---|
| 748 | 'radius': 20, 'radius_pd': 0.1, 'radius_pd_type': 'schulz', |
---|
| 749 | 'sld': 4, 'sld_solvent': 1, |
---|
| 750 | 'volfraction': 0.3, |
---|
| 751 | } |
---|
| 752 | |
---|
| 753 | Q, IQ = load_sasfit(data_file('richard_test.txt')) |
---|
| 754 | Q, IQSD = load_sasfit(data_file('richard_test2.txt')) |
---|
| 755 | Q, IQBD = load_sasfit(data_file('richard_test3.txt')) |
---|
| 756 | target = Theory(Q=Q, F1=None, F2=None, P=IQ, S=None, I=IQSD, Seff=None, Ibeta=IQBD) |
---|
| 757 | actual = sphere_r(Q, norm="sasfit", **pars) |
---|
| 758 | title = " ".join(("sasfit", "sphere", "pd=10% schulz")) |
---|
| 759 | compare(title, target, actual) |
---|
| 760 | COMPARISON[('sasfit', 'sphere', 'schulz')] = compare_sasfit_sphere_schulz |
---|
| 761 | |
---|
| 762 | def compare_sasfit_ellipsoid_schulz(): |
---|
| 763 | #polarradius=20, equatorialradius=10, sld=4,sld_solvent=1,volfraction=0.3,radius_polar_pd=0.1 |
---|
| 764 | #Effective radius =13.1353356684 |
---|
| 765 | #We have scaled the output from sasfit by 1e-4*volume*volfraction |
---|
| 766 | #0.10050378152592121 |
---|
| 767 | pars = { |
---|
| 768 | 'radius_polar': 20, 'radius_polar_pd': 0.1, 'radius_polar_pd_type': 'schulz', |
---|
| 769 | 'radius_equatorial': 10, 'radius_equatorial_pd': 0., 'radius_equatorial_pd_type': 'schulz', |
---|
| 770 | 'sld': 4, 'sld_solvent': 1, |
---|
| 771 | 'volfraction': 0.3, 'radius_effective': 13.1353356684, |
---|
| 772 | } |
---|
| 773 | |
---|
| 774 | Q, IQ = load_sasfit(data_file('richard_test4.txt')) |
---|
| 775 | Q, IQSD = load_sasfit(data_file('richard_test5.txt')) |
---|
| 776 | Q, IQBD = load_sasfit(data_file('richard_test6.txt')) |
---|
| 777 | target = Theory(Q=Q, F1=None, F2=None, P=IQ, S=None, I=IQSD, Seff=None, Ibeta=IQBD) |
---|
| 778 | actual = ellipsoid_pe(Q, norm="sasfit", **pars) |
---|
| 779 | title = " ".join(("sasfit", "ellipsoid", "pd=10% schulz")) |
---|
| 780 | compare(title, target, actual) |
---|
| 781 | COMPARISON[('sasfit', 'ellipsoid', 'schulz')] = compare_sasfit_ellipsoid_schulz |
---|
| 782 | |
---|
| 783 | |
---|
| 784 | def compare_sasfit_ellipsoid_gaussian(): |
---|
| 785 | pars = { |
---|
| 786 | 'radius_polar': 20, 'radius_polar_pd': 0, 'radius_polar_pd_type': 'gaussian', |
---|
| 787 | 'radius_equatorial': 10, 'radius_equatorial_pd': 0, 'radius_equatorial_pd_type': 'gaussian', |
---|
| 788 | 'sld': 4, 'sld_solvent': 1, |
---|
| 789 | 'volfraction': 0, 'radius_effective': None, |
---|
| 790 | } |
---|
| 791 | |
---|
| 792 | #Rp=20,Re=10,eta_core=4,eta_solv=1 |
---|
| 793 | Q, PQ0 = load_sasfit(data_file('sasfit_ellipsoid_IQM.txt')) |
---|
| 794 | pars.update(volfraction=0, radius_polar_pd=0.0, radius_equatorial_pd=0, radius_effective=None) |
---|
| 795 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
| 796 | target = Theory(Q=Q, P=PQ0) |
---|
| 797 | compare("sasfit ellipsoid no poly", target, actual); plt.show() |
---|
| 798 | |
---|
| 799 | #N=1,s=2,X0=20,distr 10% polar Rp=20,Re=10,eta_core=4,eta_solv=1, no structure poly |
---|
| 800 | Q, PQ_Rp10 = load_sasfit(data_file('sasfit_ellipsoid_IQD.txt')) |
---|
| 801 | pars.update(volfraction=0, radius_polar_pd=0.1, radius_equatorial_pd=0.0, radius_effective=None) |
---|
| 802 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
| 803 | target = Theory(Q=Q, P=PQ_Rp10) |
---|
| 804 | compare("sasfit ellipsoid P(Q) 10% Rp", target, actual); plt.show() |
---|
| 805 | #N=1,s=1,X0=10,distr 10% equatorial Rp=20,Re=10,eta_core=4,eta_solv=1, no structure poly |
---|
| 806 | Q, PQ_Re10 = load_sasfit(data_file('sasfit_ellipsoid_IQD2.txt')) |
---|
| 807 | pars.update(volfraction=0, radius_polar_pd=0.0, radius_equatorial_pd=0.1, radius_effective=None) |
---|
| 808 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
| 809 | target = Theory(Q=Q, P=PQ_Re10) |
---|
| 810 | compare("sasfit ellipsoid P(Q) 10% Re", target, actual); plt.show() |
---|
| 811 | #N=1,s=6,X0=20,distr 30% polar Rp=20,Re=10,eta_core=4,eta_solv=1, no structure poly |
---|
| 812 | Q, PQ_Rp30 = load_sasfit(data_file('sasfit_ellipsoid_IQD3.txt')) |
---|
| 813 | pars.update(volfraction=0, radius_polar_pd=0.3, radius_equatorial_pd=0.0, radius_effective=None) |
---|
| 814 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
| 815 | target = Theory(Q=Q, P=PQ_Rp30) |
---|
| 816 | compare("sasfit ellipsoid P(Q) 30% Rp", target, actual); plt.show() |
---|
| 817 | #N=1,s=3,X0=10,distr 30% equatorial Rp=20,Re=10,eta_core=4,eta_solv=1, no structure poly |
---|
| 818 | Q, PQ_Re30 = load_sasfit(data_file('sasfit_ellipsoid_IQD4.txt')) |
---|
| 819 | pars.update(volfraction=0, radius_polar_pd=0.0, radius_equatorial_pd=0.3, radius_effective=None) |
---|
| 820 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
| 821 | target = Theory(Q=Q, P=PQ_Re30) |
---|
| 822 | compare("sasfit ellipsoid P(Q) 30% Re", target, actual); plt.show() |
---|
| 823 | #N=1,s=12,X0=20,distr 60% polar Rp=20,Re=10,eta_core=4,eta_solv=1, no structure poly |
---|
| 824 | Q, PQ_Rp60 = load_sasfit(data_file('sasfit_ellipsoid_IQD5.txt')) |
---|
| 825 | pars.update(volfraction=0, radius_polar_pd=0.6, radius_equatorial_pd=0.0, radius_effective=None) |
---|
| 826 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
| 827 | target = Theory(Q=Q, P=PQ_Rp60) |
---|
| 828 | compare("sasfit ellipsoid P(Q) 60% Rp", target, actual); plt.show() |
---|
| 829 | #N=1,s=6,X0=10,distr 60% equatorial Rp=20,Re=10,eta_core=4,eta_solv=1, no structure poly |
---|
| 830 | Q, PQ_Re60 = load_sasfit(data_file('sasfit_ellipsoid_IQD6.txt')) |
---|
| 831 | pars.update(volfraction=0, radius_polar_pd=0.0, radius_equatorial_pd=0.6, radius_effective=None) |
---|
| 832 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
| 833 | target = Theory(Q=Q, P=PQ_Re60) |
---|
| 834 | compare("sasfit ellipsoid P(Q) 60% Re", target, actual); plt.show() |
---|
| 835 | |
---|
| 836 | #N=1,s=2,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.1354236254,.15 |
---|
| 837 | Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq.txt')) |
---|
| 838 | Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff.txt')) |
---|
| 839 | pars.update(volfraction=0.15, radius_polar_pd=0.1, radius_equatorial_pd=0, radius_effective=13.1354236254) |
---|
| 840 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
| 841 | target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) |
---|
| 842 | compare("sasfit ellipsoid P(Q) 10% Rp 15% Vf", target, actual); plt.show() |
---|
| 843 | #N=1,s=6,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.0901197149,.15 |
---|
| 844 | Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq2.txt')) |
---|
| 845 | Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff2.txt')) |
---|
| 846 | pars.update(volfraction=0.15, radius_polar_pd=0.3, radius_equatorial_pd=0, radius_effective=13.0901197149) |
---|
| 847 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
| 848 | target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) |
---|
| 849 | compare("sasfit ellipsoid P(Q) 30% Rp 15% Vf", target, actual); plt.show() |
---|
| 850 | #N=1,s=12,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.336060917,.15 |
---|
| 851 | Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq3.txt')) |
---|
| 852 | Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff3.txt')) |
---|
| 853 | pars.update(volfraction=0.15, radius_polar_pd=0.6, radius_equatorial_pd=0, radius_effective=13.336060917) |
---|
| 854 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
| 855 | target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) |
---|
| 856 | compare("sasfit ellipsoid P(Q) 60% Rp 15% Vf", target, actual); plt.show() |
---|
| 857 | |
---|
| 858 | #N=1,s=2,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.1354236254,.3 |
---|
| 859 | Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq4.txt')) |
---|
| 860 | Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff4.txt')) |
---|
| 861 | pars.update(volfraction=0.3, radius_polar_pd=0.1, radius_equatorial_pd=0, radius_effective=13.1354236254) |
---|
| 862 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
| 863 | target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) |
---|
| 864 | compare("sasfit ellipsoid P(Q) 10% Rp 30% Vf", target, actual); plt.show() |
---|
| 865 | #N=1,s=6,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.0901197149,.3 |
---|
| 866 | Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq5.txt')) |
---|
| 867 | Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff5.txt')) |
---|
| 868 | pars.update(volfraction=0.3, radius_polar_pd=0.3, radius_equatorial_pd=0, radius_effective=13.0901197149) |
---|
| 869 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
| 870 | target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) |
---|
| 871 | compare("sasfit ellipsoid P(Q) 30% Rp 30% Vf", target, actual); plt.show() |
---|
| 872 | #N=1,s=12,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.336060917,.3 |
---|
| 873 | Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq6.txt')) |
---|
| 874 | Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff6.txt')) |
---|
| 875 | pars.update(volfraction=0.3, radius_polar_pd=0.6, radius_equatorial_pd=0, radius_effective=13.336060917) |
---|
| 876 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
| 877 | target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) |
---|
| 878 | compare("sasfit ellipsoid P(Q) 60% Rp 30% Vf", target, actual); plt.show() |
---|
| 879 | |
---|
| 880 | #N=1,s=2,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.1354236254,.6 |
---|
| 881 | Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq7.txt')) |
---|
| 882 | Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff7.txt')) |
---|
| 883 | pars.update(volfraction=0.6, radius_polar_pd=0.1, radius_equatorial_pd=0, radius_effective=13.1354236254) |
---|
| 884 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
| 885 | target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) |
---|
| 886 | compare("sasfit ellipsoid P(Q) 10% Rp 60% Vf", target, actual); plt.show() |
---|
| 887 | #N=1,s=6,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.0901197149,.6 |
---|
| 888 | Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq8.txt')) |
---|
| 889 | Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff8.txt')) |
---|
| 890 | pars.update(volfraction=0.6, radius_polar_pd=0.3, radius_equatorial_pd=0, radius_effective=13.0901197149) |
---|
| 891 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
| 892 | target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) |
---|
| 893 | compare("sasfit ellipsoid P(Q) 30% Rp 60% Vf", target, actual); plt.show() |
---|
| 894 | #N=1,s=12,X0=20,distr polar Rp=20,Re=10,eta_core=4,eta_solv=1, hardsphere ,13.336060917,.6 |
---|
| 895 | Q, SQ = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sq9.txt')) |
---|
| 896 | Q, SQ_EFF = load_sasfit(data_file('sasfit_polydisperse_ellipsoid_sqeff9.txt')) |
---|
| 897 | pars.update(volfraction=0.6, radius_polar_pd=0.6, radius_equatorial_pd=0, radius_effective=13.336060917) |
---|
| 898 | actual = ellipsoid_pe(Q, norm='sasfit', **pars) |
---|
| 899 | target = Theory(Q=Q, S=SQ, Seff=SQ_EFF) |
---|
| 900 | compare("sasfit ellipsoid P(Q) 60% Rp 60% Vf", target, actual); plt.show() |
---|
| 901 | COMPARISON[('sasfit', 'ellipsoid', 'gaussian')] = compare_sasfit_ellipsoid_gaussian |
---|
| 902 | |
---|
| 903 | def main(): |
---|
| 904 | key = tuple(sys.argv[1:]) |
---|
| 905 | if key not in COMPARISON: |
---|
| 906 | print("Usage: python sasfit_compare.py [sasview|sasfit|yun] [sphere|ellipsoid|vesicle|hollow_cylinder] [gaussian|schulz]") |
---|
| 907 | print("But not for [yun sphere schulz], and vesicle & hollow_cylinder only with sasview.") |
---|
| 908 | print("Note this compares chosen source against internal python code here, with adjustment for known scale etc issues.") |
---|
| 909 | return |
---|
| 910 | comparison = COMPARISON[key] |
---|
| 911 | comparison() |
---|
| 912 | |
---|
| 913 | if __name__ == "__main__": |
---|
| 914 | main() |
---|