1 | """ |
---|
2 | The current 1D calculations for BCC paracrystal are very wrong at low q, orders |
---|
3 | of magnitude wrong. The integration fails to capture a very narrow, |
---|
4 | very steep ridge. |
---|
5 | |
---|
6 | Uncomment the plot() line at the bottom of the code to show an image of the |
---|
7 | set of S(q, theta, phi) values that must be summed to form the 1D S(q=0.001) |
---|
8 | for the BCC paracrystal form. Note particularly that this is a log scale |
---|
9 | image spanning 10 orders of magnitude. This pattern repeats itself 8 times |
---|
10 | over the entire 4 pi surface integral. |
---|
11 | |
---|
12 | You can explore various integration options by uncommenting more lines. |
---|
13 | Adaptive integration using scpy.integrate.dbsquad is very slow. Romberg |
---|
14 | didn't even complete in the time I gave it. Accurate brute force calculation |
---|
15 | requires a 4000x4000 grid to get enough precision. |
---|
16 | |
---|
17 | We may need a specialized integrator for low q which can identify and integrate |
---|
18 | the ridges properly. |
---|
19 | |
---|
20 | This program need sasmodels on the path so it is inserted automatically, |
---|
21 | assuming that the explore/bccpy.py is beside sasmodels/special.py in the |
---|
22 | source tree. Run from the sasmodels directory using: |
---|
23 | |
---|
24 | python explore/bccpy.py |
---|
25 | """ |
---|
26 | |
---|
27 | from __future__ import print_function, division |
---|
28 | |
---|
29 | import os, sys |
---|
30 | sys.path.insert(0, os.path.dirname(os.path.dirname(__file__))) |
---|
31 | |
---|
32 | import numpy as np |
---|
33 | from numpy import pi, sin, cos, exp, expm1, degrees, log10 |
---|
34 | from scipy.integrate import dblquad, simps, romb, romberg |
---|
35 | import pylab |
---|
36 | |
---|
37 | from sasmodels.special import square |
---|
38 | from sasmodels.special import Gauss20Wt, Gauss20Z |
---|
39 | from sasmodels.special import Gauss76Wt, Gauss76Z |
---|
40 | from sasmodels.special import Gauss150Wt, Gauss150Z |
---|
41 | |
---|
42 | Q = 0.001 |
---|
43 | DNN = 220. |
---|
44 | D_FACTOR = 0.06 |
---|
45 | RADIUS = 40.0 |
---|
46 | SLD = 3.0 |
---|
47 | SLD_SOLVENT = 6.3 |
---|
48 | |
---|
49 | # Note: using Matsuoka 1990; this is different from what |
---|
50 | # is in the sasmodels/models code (see bcc vs bcc_old). |
---|
51 | # The difference is that the sign of phi and theta seem to be |
---|
52 | # negative in the old vs. the new, yielding a pattern that is |
---|
53 | # swapped left to right and top to bottom. |
---|
54 | def sc(qa, qb, qc): |
---|
55 | return qa, qb, qc |
---|
56 | |
---|
57 | def bcc(qa, qb, qc): |
---|
58 | a1 = (+qa + qb + qc)/2 |
---|
59 | a2 = (-qa - qb + qc)/2 |
---|
60 | a3 = (-qa + qb - qc)/2 |
---|
61 | return a1, a2, a3 |
---|
62 | |
---|
63 | def bcc_old(qa, qb, qc): |
---|
64 | a1 = (+qa + qb - qc)/2.0 |
---|
65 | a2 = (+qa - qb + qc)/2.0 |
---|
66 | a3 = (-qa + qb + qc)/2.0 |
---|
67 | return a1, a2, a3 |
---|
68 | |
---|
69 | def fcc(qa, qb, qc): |
---|
70 | a1 = ( 0. + qb + qc)/2 |
---|
71 | a2 = (-qa + 0. + qc)/2 |
---|
72 | a3 = (-qa + qb + 0.)/2 |
---|
73 | return a1, a2, a3 |
---|
74 | |
---|
75 | def fcc_old(qa, qb, qc): |
---|
76 | a1 = ( qa + qb + 0.)/2 |
---|
77 | a2 = ( qa + 0. + qc)/2 |
---|
78 | a3 = ( 0. + qb + qc)/2 |
---|
79 | return a1, a2, a3 |
---|
80 | |
---|
81 | KERNEL = bcc |
---|
82 | |
---|
83 | def kernel(q, dnn, d_factor, theta, phi): |
---|
84 | """ |
---|
85 | S(q) kernel for paracrystal forms. |
---|
86 | """ |
---|
87 | qab = q*sin(theta) |
---|
88 | qa = qab*cos(phi) |
---|
89 | qb = qab*sin(phi) |
---|
90 | qc = q*cos(theta) |
---|
91 | |
---|
92 | a1, a2, a3 = KERNEL(qa, qb, qc) |
---|
93 | |
---|
94 | # Note: paper says that different directions can have different distortion |
---|
95 | # factors. Easy enough to add to the code. This would definitely break |
---|
96 | # 8-fold symmetry. |
---|
97 | arg = -0.5*square(dnn*d_factor)*(a1**2 + a2**2 + a3**2) |
---|
98 | exp_arg = exp(arg) |
---|
99 | den = [((exp_arg - 2*cos(dnn*a))*exp_arg + 1.0) for a in (a1, a2, a3)] |
---|
100 | Zq = -expm1(2*arg)**3/np.prod(den, axis=0) |
---|
101 | return Zq |
---|
102 | |
---|
103 | |
---|
104 | def scipy_dblquad(q=Q, dnn=DNN, d_factor=D_FACTOR): |
---|
105 | """ |
---|
106 | Compute the integral using scipy dblquad. This gets the correct answer |
---|
107 | eventually, but it is slow. |
---|
108 | """ |
---|
109 | evals = [0] |
---|
110 | def integrand(theta, phi): |
---|
111 | evals[0] += 1 |
---|
112 | Zq = kernel(q=q, dnn=dnn, d_factor=d_factor, theta=theta, phi=phi) |
---|
113 | return Zq*sin(theta) |
---|
114 | ans = dblquad(integrand, 0, pi/2, lambda x: 0, lambda x: pi/2)[0]*8/(4*pi) |
---|
115 | print("dblquad evals =", evals[0]) |
---|
116 | return ans |
---|
117 | |
---|
118 | |
---|
119 | def scipy_romberg_2d(q=Q, dnn=DNN, d_factor=D_FACTOR): |
---|
120 | """ |
---|
121 | Compute the integral using romberg integration. This function does not |
---|
122 | complete in a reasonable time. No idea if it is accurate. |
---|
123 | """ |
---|
124 | def inner(phi, theta): |
---|
125 | return kernel(q=q, dnn=dnn, d_factor=d_factor, theta=theta, phi=phi) |
---|
126 | def outer(theta): |
---|
127 | return romberg(inner, 0, pi/2, divmax=100, args=(theta,))*sin(theta) |
---|
128 | return romberg(outer, 0, pi/2, divmax=100)*8/(4*pi) |
---|
129 | |
---|
130 | |
---|
131 | def semi_romberg(q=Q, dnn=DNN, d_factor=D_FACTOR, n=100): |
---|
132 | """ |
---|
133 | Use 1D romberg integration in phi and regular simpsons rule in theta. |
---|
134 | """ |
---|
135 | evals = [0] |
---|
136 | def inner(phi, theta): |
---|
137 | evals[0] += 1 |
---|
138 | return kernel(q=q, dnn=dnn, d_factor=d_factor, theta=theta, phi=phi) |
---|
139 | theta = np.linspace(0, pi/2, n) |
---|
140 | f_phi = [romberg(inner, 0, pi/2, divmax=100, args=(t,)) |
---|
141 | for t in theta] |
---|
142 | ans = simps(sin(theta)*np.array(f_phi), dx=theta[1]-theta[0]) |
---|
143 | print("semi romberg evals =", evals[0]) |
---|
144 | return ans*8/(4*pi) |
---|
145 | |
---|
146 | def gauss_quad(q=Q, dnn=DNN, d_factor=D_FACTOR, n=150): |
---|
147 | """ |
---|
148 | Compute the integral using gaussian quadrature for n = 20, 76 or 150. |
---|
149 | """ |
---|
150 | if n == 20: |
---|
151 | z, w = Gauss20Z, Gauss20Wt |
---|
152 | elif n == 76: |
---|
153 | z, w = Gauss76Z, Gauss76Wt |
---|
154 | else: |
---|
155 | z, w = Gauss150Z, Gauss150Wt |
---|
156 | theta = pi/4*(z + 1) |
---|
157 | phi = pi/4*(z + 1) |
---|
158 | Atheta, Aphi = np.meshgrid(theta, phi) |
---|
159 | Aw = w[None, :] * w[:, None] |
---|
160 | sin_theta = np.fmax(abs(sin(Atheta)), 1e-6) |
---|
161 | Zq = kernel(q=q, dnn=dnn, d_factor=d_factor, theta=Atheta, phi=Aphi) |
---|
162 | print("gauss %d evals ="%n, n**2) |
---|
163 | return np.sum(Zq*Aw*sin_theta)*8/(4*pi) |
---|
164 | |
---|
165 | |
---|
166 | def gridded_integrals(q=0.001, dnn=DNN, d_factor=D_FACTOR, n=300): |
---|
167 | """ |
---|
168 | Compute the integral on a regular grid using rectangular, trapezoidal, |
---|
169 | simpsons, and romberg integration. Romberg integration requires that |
---|
170 | the grid be of size n = 2**k + 1. |
---|
171 | """ |
---|
172 | theta = np.linspace(0, pi/2, n) |
---|
173 | phi = np.linspace(0, pi/2, n) |
---|
174 | Atheta, Aphi = np.meshgrid(theta, phi) |
---|
175 | Zq = kernel(q=Q, dnn=dnn, d_factor=d_factor, theta=Atheta, phi=Aphi) |
---|
176 | Zq *= abs(sin(Atheta)) |
---|
177 | dx, dy = theta[1]-theta[0], phi[1]-phi[0] |
---|
178 | print("rect", n, np.sum(Zq)*dx*dy*8/(4*pi)) |
---|
179 | print("trapz", n, np.trapz(np.trapz(Zq, dx=dx), dx=dy)*8/(4*pi)) |
---|
180 | print("simpson", n, simps(simps(Zq, dx=dx), dx=dy)*8/(4*pi)) |
---|
181 | print("romb", n, romb(romb(Zq, dx=dx), dx=dy)*8/(4*pi)) |
---|
182 | print("gridded %d evals ="%n, n**2) |
---|
183 | |
---|
184 | def plot(q=0.001, dnn=DNN, d_factor=D_FACTOR, n=300): |
---|
185 | """ |
---|
186 | Plot the 2D surface that needs to be integrated in order to compute |
---|
187 | the BCC S(q) at a particular q, dnn and d_factor. *n* is the number |
---|
188 | of points in the grid. |
---|
189 | """ |
---|
190 | theta = np.linspace(0, pi, n) |
---|
191 | phi = np.linspace(0, 2*pi, n) |
---|
192 | #theta = np.linspace(0, pi/2, n) |
---|
193 | #phi = np.linspace(0, pi/2, n) |
---|
194 | Atheta, Aphi = np.meshgrid(theta, phi) |
---|
195 | Zq = kernel(q=Q, dnn=dnn, d_factor=d_factor, theta=Atheta, phi=Aphi) |
---|
196 | Zq *= abs(sin(Atheta)) |
---|
197 | pylab.pcolor(degrees(theta), degrees(phi), log10(np.fmax(Zq, 1.e-6))) |
---|
198 | pylab.axis('tight') |
---|
199 | pylab.title("%s Z(q) for q=%g, dnn=%g d_factor=%g" |
---|
200 | % (KERNEL.__name__, q, dnn, d_factor)) |
---|
201 | pylab.xlabel("theta (degrees)") |
---|
202 | pylab.ylabel("phi (degrees)") |
---|
203 | cbar = pylab.colorbar() |
---|
204 | cbar.set_label('log10 S(q)') |
---|
205 | pylab.show() |
---|
206 | |
---|
207 | if __name__ == "__main__": |
---|
208 | #print("gauss", 20, gauss_quad(n=20)) |
---|
209 | #print("gauss", 76, gauss_quad(n=76)) |
---|
210 | #print("gauss", 150, gauss_quad(n=150)) |
---|
211 | #print("dblquad", scipy_dblquad()) |
---|
212 | #print("semi romberg", semi_romberg()) |
---|
213 | #gridded_integrals(n=2**8+1) |
---|
214 | #gridded_integrals(n=2**10+1) |
---|
215 | #gridded_integrals(n=2**13+1) |
---|
216 | #print("romberg", scipy_romberg()) |
---|
217 | plot(n=400) |
---|