1 | """ |
---|
2 | Asymmetric shape integration |
---|
3 | """ |
---|
4 | |
---|
5 | from __future__ import print_function, division |
---|
6 | |
---|
7 | import os, sys |
---|
8 | sys.path.insert(0, os.path.dirname(os.path.dirname(__file__))) |
---|
9 | |
---|
10 | import numpy as np |
---|
11 | from numpy import pi, sin, cos, sqrt, exp, expm1, degrees, log10 |
---|
12 | from scipy.integrate import dblquad, simps, romb, romberg |
---|
13 | import pylab |
---|
14 | |
---|
15 | from sasmodels.special import square |
---|
16 | from sasmodels.special import Gauss20Wt, Gauss20Z |
---|
17 | from sasmodels.special import Gauss76Wt, Gauss76Z |
---|
18 | from sasmodels.special import Gauss150Wt, Gauss150Z |
---|
19 | from sasmodels.special import sas_2J1x_x, sas_sinx_x, sas_3j1x_x |
---|
20 | |
---|
21 | SLD = 3.0 |
---|
22 | SLD_SOLVENT = 6.3 |
---|
23 | CONTRAST = SLD - SLD_SOLVENT |
---|
24 | |
---|
25 | def make_cylinder(radius, length): |
---|
26 | def cylinder(qa, qb, qc): |
---|
27 | qab = sqrt(qa**2 + qb**2) |
---|
28 | return sas_2J1x_x(qab*radius) * sas_sinx_x(qc*0.5*length) |
---|
29 | volume = pi*radius**2*length |
---|
30 | norm = 1e-4*volume*CONTRAST**2 |
---|
31 | return norm, cylinder |
---|
32 | |
---|
33 | def make_sphere(radius): |
---|
34 | def sphere(qa, qb, qc): |
---|
35 | qab = sqrt(qa**2 + qb**2) |
---|
36 | q = sqrt(qab**2 + qc**2) |
---|
37 | return sas_3j1x_x(q*radius) |
---|
38 | volume = 4*pi*radius**3/3 |
---|
39 | norm = 1e-4*volume*CONTRAST**2 |
---|
40 | return norm, sphere |
---|
41 | |
---|
42 | #NORM, KERNEL = make_cylinder(radius=10., length=100000.) |
---|
43 | NORM, KERNEL = make_cylinder(radius=10., length=30.) |
---|
44 | #NORM, KERNEL = make_sphere(radius=50.) |
---|
45 | |
---|
46 | THETA_LOW, THETA_HIGH = 0, pi |
---|
47 | PHI_LOW, PHI_HIGH = 0, 2*pi |
---|
48 | SCALE = 1 |
---|
49 | |
---|
50 | |
---|
51 | def kernel(q, theta, phi): |
---|
52 | """ |
---|
53 | S(q) kernel for paracrystal forms. |
---|
54 | """ |
---|
55 | qab = q*sin(theta) |
---|
56 | qa = qab*cos(phi) |
---|
57 | qb = qab*sin(phi) |
---|
58 | qc = q*cos(theta) |
---|
59 | return NORM*KERNEL(qa, qb, qc)**2 |
---|
60 | |
---|
61 | |
---|
62 | def scipy_dblquad(q): |
---|
63 | """ |
---|
64 | Compute the integral using scipy dblquad. This gets the correct answer |
---|
65 | eventually, but it is slow. |
---|
66 | """ |
---|
67 | evals = [0] |
---|
68 | def integrand(theta, phi): |
---|
69 | evals[0] += 1 |
---|
70 | Zq = kernel(q, theta=theta, phi=phi) |
---|
71 | return Zq*sin(theta) |
---|
72 | ans = dblquad(integrand, THETA_LOW, THETA_HIGH, lambda x: PHI_LOW, lambda x: PHI_HIGH)[0]*SCALE/(4*pi) |
---|
73 | print("dblquad evals =", evals[0]) |
---|
74 | return ans |
---|
75 | |
---|
76 | |
---|
77 | def scipy_romberg_2d(q): |
---|
78 | """ |
---|
79 | Compute the integral using romberg integration. This function does not |
---|
80 | complete in a reasonable time. No idea if it is accurate. |
---|
81 | """ |
---|
82 | def inner(phi, theta): |
---|
83 | return kernel(q, theta=theta, phi=phi) |
---|
84 | def outer(theta): |
---|
85 | return romberg(inner, PHI_LOW, PHI_HIGH, divmax=100, args=(theta,))*sin(theta) |
---|
86 | return romberg(outer, THETA_LOW, THETA_HIGH, divmax=100)*SCALE/(4*pi) |
---|
87 | |
---|
88 | |
---|
89 | def semi_romberg(q, n=100): |
---|
90 | """ |
---|
91 | Use 1D romberg integration in phi and regular simpsons rule in theta. |
---|
92 | """ |
---|
93 | evals = [0] |
---|
94 | def inner(phi, theta): |
---|
95 | evals[0] += 1 |
---|
96 | return kernel(q, theta=theta, phi=phi) |
---|
97 | theta = np.linspace(THETA_LOW, THETA_HIGH, n) |
---|
98 | f_phi = [romberg(inner, PHI_LOW, PHI_HIGH, divmax=100, args=(t,)) |
---|
99 | for t in theta] |
---|
100 | ans = simps(sin(theta)*np.array(f_phi), dx=theta[1]-theta[0]) |
---|
101 | print("semi romberg evals =", evals[0]) |
---|
102 | return ans*SCALE/(4*pi) |
---|
103 | |
---|
104 | def gauss_quad(q, n=150): |
---|
105 | """ |
---|
106 | Compute the integral using gaussian quadrature for n = 20, 76 or 150. |
---|
107 | """ |
---|
108 | if n == 20: |
---|
109 | z, w = Gauss20Z, Gauss20Wt |
---|
110 | elif n == 76: |
---|
111 | z, w = Gauss76Z, Gauss76Wt |
---|
112 | else: |
---|
113 | z, w = Gauss150Z, Gauss150Wt |
---|
114 | theta = (THETA_HIGH-THETA_LOW)*(z + 1)/2 + THETA_LOW |
---|
115 | phi = (PHI_HIGH-PHI_LOW)*(z + 1)/2 + PHI_LOW |
---|
116 | Atheta, Aphi = np.meshgrid(theta, phi) |
---|
117 | Aw = w[None, :] * w[:, None] |
---|
118 | sin_theta = np.fmax(abs(sin(Atheta)), 1e-6) |
---|
119 | Zq = kernel(q=q, theta=Atheta, phi=Aphi) |
---|
120 | print("gauss %d evals ="%n, n**2) |
---|
121 | return np.sum(Zq*Aw*sin_theta)*SCALE/(4*pi) |
---|
122 | |
---|
123 | |
---|
124 | def gridded_integrals(q, n=300): |
---|
125 | """ |
---|
126 | Compute the integral on a regular grid using rectangular, trapezoidal, |
---|
127 | simpsons, and romberg integration. Romberg integration requires that |
---|
128 | the grid be of size n = 2**k + 1. |
---|
129 | """ |
---|
130 | theta = np.linspace(THETA_LOW, THETA_HIGH, n) |
---|
131 | phi = np.linspace(PHI_LOW, PHI_HIGH, n) |
---|
132 | Atheta, Aphi = np.meshgrid(theta, phi) |
---|
133 | Zq = kernel(q=q, theta=Atheta, phi=Aphi) |
---|
134 | Zq *= abs(sin(Atheta)) |
---|
135 | dx, dy = theta[1]-theta[0], phi[1]-phi[0] |
---|
136 | print("rect", n, np.sum(Zq)*dx*dy*SCALE/(4*pi)) |
---|
137 | print("trapz", n, np.trapz(np.trapz(Zq, dx=dx), dx=dy)*SCALE/(4*pi)) |
---|
138 | print("simpson", n, simps(simps(Zq, dx=dx), dx=dy)*SCALE/(4*pi)) |
---|
139 | print("romb", n, romb(romb(Zq, dx=dx), dx=dy)*SCALE/(4*pi)) |
---|
140 | print("gridded %d evals ="%n, n**2) |
---|
141 | |
---|
142 | def plot(q, n=300): |
---|
143 | """ |
---|
144 | Plot the 2D surface that needs to be integrated in order to compute |
---|
145 | the BCC S(q) at a particular q, dnn and d_factor. *n* is the number |
---|
146 | of points in the grid. |
---|
147 | """ |
---|
148 | theta = np.linspace(THETA_LOW, THETA_HIGH, n) |
---|
149 | phi = np.linspace(PHI_LOW, PHI_HIGH, n) |
---|
150 | Atheta, Aphi = np.meshgrid(theta, phi) |
---|
151 | Zq = kernel(q=q, theta=Atheta, phi=Aphi) |
---|
152 | #Zq *= abs(sin(Atheta)) |
---|
153 | pylab.pcolor(degrees(theta), degrees(phi), log10(np.fmax(Zq, 1.e-6))) |
---|
154 | pylab.axis('tight') |
---|
155 | pylab.title("%s Z(q) for q=%g" % (KERNEL.__name__, q)) |
---|
156 | pylab.xlabel("theta (degrees)") |
---|
157 | pylab.ylabel("phi (degrees)") |
---|
158 | cbar = pylab.colorbar() |
---|
159 | cbar.set_label('log10 S(q)') |
---|
160 | pylab.show() |
---|
161 | |
---|
162 | if __name__ == "__main__": |
---|
163 | Q = 0.8 |
---|
164 | print("gauss", 20, gauss_quad(Q, n=20)) |
---|
165 | print("gauss", 76, gauss_quad(Q, n=76)) |
---|
166 | print("gauss", 150, gauss_quad(Q, n=150)) |
---|
167 | #print("dblquad", scipy_dblquad(Q)) |
---|
168 | #print("semi romberg", semi_romberg(Q)) |
---|
169 | #gridded_integrals(Q, n=2**8+1) |
---|
170 | #gridded_integrals(Q, n=2**10+1) |
---|
171 | #gridded_integrals(Q, n=2**13+1) |
---|
172 | #print("romberg", scipy_romberg(Q)) |
---|
173 | plot(Q, n=400) |
---|