1 | #!/usr/bin/env python |
---|
2 | """ |
---|
3 | Asymmetric shape integration |
---|
4 | |
---|
5 | Usage: |
---|
6 | |
---|
7 | explore/asymint.py [MODEL] [q-value] |
---|
8 | |
---|
9 | Computes the numerical integral over theta and phi of the given model at a |
---|
10 | single point q using different algorithms or the same algorithm with different |
---|
11 | precision. It also displays a 2-D image of the theta-phi surface that is |
---|
12 | being integrated. |
---|
13 | |
---|
14 | The available models are: |
---|
15 | |
---|
16 | triaxial_ellipsoid, parallelpiped, paracrystal, cylinder, sphere |
---|
17 | |
---|
18 | Cylinder and sphere are included as simple checks on the integration |
---|
19 | algorithms. Cylinder is better investigated using 1-D integration methods in |
---|
20 | explore/symint.py. Sphere has an easily computed analytic value which is |
---|
21 | identical for all theta-phi for a given q, so it is useful for checking |
---|
22 | that the normalization constants are correct for the different algorithms. |
---|
23 | """ |
---|
24 | |
---|
25 | from __future__ import print_function, division |
---|
26 | |
---|
27 | import os, sys |
---|
28 | sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) |
---|
29 | |
---|
30 | import numpy as np |
---|
31 | import mpmath as mp |
---|
32 | from numpy import pi, sin, cos, sqrt, exp, expm1, degrees, log10, arccos |
---|
33 | from numpy.polynomial.legendre import leggauss |
---|
34 | from scipy.integrate import dblquad, simps, romb, romberg |
---|
35 | import pylab |
---|
36 | |
---|
37 | import sasmodels.special as sp |
---|
38 | |
---|
39 | # Need to parse shape early since it determines the kernel function |
---|
40 | # that will be used for the various integrators |
---|
41 | shape = 'parallelepiped' if len(sys.argv) < 2 else sys.argv[1] |
---|
42 | Qstr = '0.005' if len(sys.argv) < 3 else sys.argv[2] |
---|
43 | |
---|
44 | DTYPE = 'd' |
---|
45 | |
---|
46 | class MPenv: |
---|
47 | sqrt = staticmethod(mp.sqrt) |
---|
48 | exp = staticmethod(mp.exp) |
---|
49 | expm1 = staticmethod(mp.expm1) |
---|
50 | cos = staticmethod(mp.cos) |
---|
51 | sin = staticmethod(mp.sin) |
---|
52 | tan = staticmethod(mp.tan) |
---|
53 | @staticmethod |
---|
54 | def sas_3j1x_x(x): |
---|
55 | return 3*(mp.sin(x)/x - mp.cos(x))/(x*x) |
---|
56 | @staticmethod |
---|
57 | def sas_2J1x_x(x): |
---|
58 | return 2*mp.j1(x)/x |
---|
59 | @staticmethod |
---|
60 | def sas_sinx_x(x): |
---|
61 | return mp.sin(x)/x |
---|
62 | pi = mp.pi |
---|
63 | mpf = staticmethod(mp.mpf) |
---|
64 | |
---|
65 | class NPenv: |
---|
66 | sqrt = staticmethod(np.sqrt) |
---|
67 | exp = staticmethod(np.exp) |
---|
68 | expm1 = staticmethod(np.expm1) |
---|
69 | cos = staticmethod(np.cos) |
---|
70 | sin = staticmethod(np.sin) |
---|
71 | tan = staticmethod(np.tan) |
---|
72 | sas_3j1x_x = staticmethod(sp.sas_3j1x_x) |
---|
73 | sas_2J1x_x = staticmethod(sp.sas_2J1x_x) |
---|
74 | sas_sinx_x = staticmethod(sp.sas_sinx_x) |
---|
75 | pi = np.pi |
---|
76 | #mpf = staticmethod(float) |
---|
77 | mpf = staticmethod(lambda x: np.array(x, DTYPE)) |
---|
78 | |
---|
79 | SLD = 3 |
---|
80 | SLD_SOLVENT = 6 |
---|
81 | CONTRAST = SLD - SLD_SOLVENT |
---|
82 | |
---|
83 | # Carefully code models so that mpmath will use full precision. That means: |
---|
84 | # * wrap inputs in env.mpf |
---|
85 | # * don't use floating point constants, only integers |
---|
86 | # * for division, make sure the numerator or denominator is env.mpf |
---|
87 | # * use env.pi, env.sas_sinx_x, etc. for functions |
---|
88 | def make_parallelepiped(a, b, c, env=NPenv): |
---|
89 | a, b, c = env.mpf(a), env.mpf(b), env.mpf(c) |
---|
90 | def Fq(qa, qb, qc): |
---|
91 | siA = env.sas_sinx_x(a*qa/2) |
---|
92 | siB = env.sas_sinx_x(b*qb/2) |
---|
93 | siC = env.sas_sinx_x(c*qc/2) |
---|
94 | return siA * siB * siC |
---|
95 | Fq.__doc__ = "parallelepiped a=%g, b=%g c=%g"%(a, b, c) |
---|
96 | volume = a*b*c |
---|
97 | norm = CONTRAST**2*volume/10000 |
---|
98 | return norm, Fq |
---|
99 | |
---|
100 | def make_core_shell_parallelepiped(a, b, c, da, db, dc, slda, sldb, sldc, env=NPenv): |
---|
101 | overlapping = False |
---|
102 | a, b, c = env.mpf(a), env.mpf(b), env.mpf(c) |
---|
103 | da, db, dc = env.mpf(da), env.mpf(db), env.mpf(dc) |
---|
104 | slda, sldb, sldc = env.mpf(slda), env.mpf(sldb), env.mpf(sldc) |
---|
105 | dr0 = CONTRAST |
---|
106 | drA, drB, drC = slda-SLD_SOLVENT, sldb-SLD_SOLVENT, sldc-SLD_SOLVENT |
---|
107 | tA, tB, tC = a + 2*da, b + 2*db, c + 2*dc |
---|
108 | def Fq(qa, qb, qc): |
---|
109 | siA = a*env.sas_sinx_x(a*qa/2) |
---|
110 | siB = b*env.sas_sinx_x(b*qb/2) |
---|
111 | siC = c*env.sas_sinx_x(c*qc/2) |
---|
112 | siAt = tA*env.sas_sinx_x(tA*qa/2) |
---|
113 | siBt = tB*env.sas_sinx_x(tB*qb/2) |
---|
114 | siCt = tC*env.sas_sinx_x(tC*qc/2) |
---|
115 | if overlapping: |
---|
116 | return (dr0*siA*siB*siC |
---|
117 | + drA*(siAt-siA)*siB*siC |
---|
118 | + drB*siAt*(siBt-siB)*siC |
---|
119 | + drC*siAt*siBt*(siCt-siC)) |
---|
120 | else: |
---|
121 | return (dr0*siA*siB*siC |
---|
122 | + drA*(siAt-siA)*siB*siC |
---|
123 | + drB*siA*(siBt-siB)*siC |
---|
124 | + drC*siA*siB*(siCt-siC)) |
---|
125 | Fq.__doc__ = "core-shell parallelepiped a=%g, b=%g c=%g"%(a, b, c) |
---|
126 | if overlapping: |
---|
127 | volume = a*b*c + 2*da*b*c + 2*tA*db*c + 2*tA*tB*dc |
---|
128 | else: |
---|
129 | volume = a*b*c + 2*da*b*c + 2*a*db*c + 2*a*b*dc |
---|
130 | norm = 1/(volume*10000) |
---|
131 | return norm, Fq |
---|
132 | |
---|
133 | def make_triaxial_ellipsoid(a, b, c, env=NPenv): |
---|
134 | a, b, c = env.mpf(a), env.mpf(b), env.mpf(c) |
---|
135 | def Fq(qa, qb, qc): |
---|
136 | qr = env.sqrt((a*qa)**2 + (b*qb)**2 + (c*qc)**2) |
---|
137 | return env.sas_3j1x_x(qr) |
---|
138 | Fq.__doc__ = "triaxial ellipsoid minor=%g, major=%g polar=%g"%(a, b, c) |
---|
139 | volume = 4*env.pi*a*b*c/3 |
---|
140 | norm = CONTRAST**2*volume/10000 |
---|
141 | return norm, Fq |
---|
142 | |
---|
143 | def make_cylinder(radius, length, env=NPenv): |
---|
144 | radius, length = env.mpf(radius), env.mpf(length) |
---|
145 | def Fq(qa, qb, qc): |
---|
146 | qab = env.sqrt(qa**2 + qb**2) |
---|
147 | return env.sas_2J1x_x(qab*radius) * env.sas_sinx_x((qc*length)/2) |
---|
148 | Fq.__doc__ = "cylinder radius=%g, length=%g"%(radius, length) |
---|
149 | volume = env.pi*radius**2*length |
---|
150 | norm = CONTRAST**2*volume/10000 |
---|
151 | return norm, Fq |
---|
152 | |
---|
153 | def make_sphere(radius, env=NPenv): |
---|
154 | radius = env.mpf(radius) |
---|
155 | def Fq(qa, qb, qc): |
---|
156 | q = env.sqrt(qa**2 + qb**2 + qc**2) |
---|
157 | return env.sas_3j1x_x(q*radius) |
---|
158 | Fq.__doc__ = "sphere radius=%g"%(radius, ) |
---|
159 | volume = 4*pi*radius**3 |
---|
160 | norm = CONTRAST**2*volume/10000 |
---|
161 | return norm, Fq |
---|
162 | |
---|
163 | def make_paracrystal(radius, dnn, d_factor, lattice='bcc', env=NPenv): |
---|
164 | radius, dnn, d_factor = env.mpf(radius), env.mpf(dnn), env.mpf(d_factor) |
---|
165 | def sc(qa, qb, qc): |
---|
166 | return qa, qb, qc |
---|
167 | def bcc(qa, qb, qc): |
---|
168 | a1 = (+qa + qb + qc)/2 |
---|
169 | a2 = (-qa - qb + qc)/2 |
---|
170 | a3 = (-qa + qb - qc)/2 |
---|
171 | return a1, a2, a3 |
---|
172 | def fcc(qa, qb, qc): |
---|
173 | a1 = ( 0 + qb + qc)/2 |
---|
174 | a2 = (-qa + 0 + qc)/2 |
---|
175 | a3 = (-qa + qb + 0)/2 |
---|
176 | return a1, a2, a3 |
---|
177 | lattice_fn = {'sc': sc, 'bcc': bcc, 'fcc': fcc}[lattice] |
---|
178 | radius, dnn, d_factor = env.mpf(radius), env.mpf(dnn), env.mpf(d_factor) |
---|
179 | def Fq(qa, qb, qc): |
---|
180 | a1, a2, a3 = lattice_fn(qa, qb, qc) |
---|
181 | # Note: paper says that different directions can have different |
---|
182 | # distoration factors. Easy enough to add to the code. |
---|
183 | arg = -(dnn*d_factor)**2*(a1**2 + a2**2 + a3**2)/2 |
---|
184 | exp_arg = env.exp(arg) |
---|
185 | den = [((exp_arg - 2*env.cos(dnn*a))*exp_arg + 1) for a in (a1, a2, a3)] |
---|
186 | Sq = -env.expm1(2*arg)**3/(den[0]*den[1]*den[2]) |
---|
187 | |
---|
188 | q = env.sqrt(qa**2 + qb**2 + qc**2) |
---|
189 | Fq = env.sas_3j1x_x(q*radius) |
---|
190 | # the caller computes F(q)**2, but we need it to compute S(q)*F(q)**2 |
---|
191 | return env.sqrt(Sq)*Fq |
---|
192 | Fq.__doc__ = "%s paracrystal a=%g da=%g r=%g"%(lattice, dnn, d_factor, radius) |
---|
193 | def sphere_volume(r): return 4*env.pi*r**3/3 |
---|
194 | Vf = { |
---|
195 | 'sc': sphere_volume(radius/dnn), |
---|
196 | 'bcc': 2*sphere_volume(env.sqrt(3)/2*radius/dnn), |
---|
197 | 'fcc': 4*sphere_volume(1/env.sqrt(2)*radius/dnn), |
---|
198 | }[lattice] |
---|
199 | volume = sphere_volume(radius) |
---|
200 | norm = CONTRAST**2*volume/10000*Vf |
---|
201 | return norm, Fq |
---|
202 | |
---|
203 | if shape == 'sphere': |
---|
204 | RADIUS = 50 # integer for the sake of mpf |
---|
205 | NORM, KERNEL = make_sphere(radius=RADIUS) |
---|
206 | NORM_MP, KERNEL_MP = make_sphere(radius=RADIUS, env=MPenv) |
---|
207 | elif shape == 'cylinder': |
---|
208 | #RADIUS, LENGTH = 10, 100000 |
---|
209 | RADIUS, LENGTH = 10, 300 # integer for the sake of mpf |
---|
210 | NORM, KERNEL = make_cylinder(radius=RADIUS, length=LENGTH) |
---|
211 | NORM_MP, KERNEL_MP = make_cylinder(radius=RADIUS, length=LENGTH, env=MPenv) |
---|
212 | elif shape == 'triaxial_ellipsoid': |
---|
213 | #A, B, C = 4450, 14000, 47 |
---|
214 | A, B, C = 445, 140, 47 # integer for the sake of mpf |
---|
215 | NORM, KERNEL = make_triaxial_ellipsoid(A, B, C) |
---|
216 | NORM_MP, KERNEL_MP = make_triaxial_ellipsoid(A, B, C, env=MPenv) |
---|
217 | elif shape == 'parallelepiped': |
---|
218 | #A, B, C = 4450, 14000, 47 |
---|
219 | A, B, C = 445, 140, 47 # integer for the sake of mpf |
---|
220 | NORM, KERNEL = make_parallelepiped(A, B, C) |
---|
221 | NORM_MP, KERNEL_MP = make_parallelepiped(A, B, C, env=MPenv) |
---|
222 | elif shape == 'core_shell_parallelepiped': |
---|
223 | #A, B, C = 4450, 14000, 47 |
---|
224 | #A, B, C = 445, 140, 47 # integer for the sake of mpf |
---|
225 | A, B, C = 114, 1380, 6800 |
---|
226 | DA, DB, DC = 21, 58, 2300 |
---|
227 | SLDA, SLDB, SLDC = "5", "-0.3", "11.5" |
---|
228 | ## default parameters from sasmodels |
---|
229 | #A,B,C,DA,DB,DC,SLDA,SLDB,SLDC = 400,75,35,10,10,10,2,4,2 |
---|
230 | ## swap A-B-C to C-B-A |
---|
231 | #A, B, C, DA, DB, DC, SLDA, SLDB, SLDC = C, B, A, DC, DB, DA, SLDC, SLDB, SLDA |
---|
232 | #A,B,C,DA,DB,DC,SLDA,SLDB,SLDC = 10,20,30,100,200,300,1,2,3 |
---|
233 | #SLD_SOLVENT,CONTRAST = 0, 4 |
---|
234 | if 1: # C shortest |
---|
235 | B, C = C, B |
---|
236 | DB, DC = DC, DB |
---|
237 | SLDB, SLDC = SLDC, SLDB |
---|
238 | elif 0: # C longest |
---|
239 | A, C = C, A |
---|
240 | DA, DC = DC, DA |
---|
241 | SLDA, SLDC = SLDC, SLDA |
---|
242 | #NORM, KERNEL = make_core_shell_parallelepiped(A, B, C, DA, DB, DC, SLDA, SLDB, SLDC) |
---|
243 | NORM, KERNEL = make_core_shell_parallelepiped(A, B, C, DA, DB, DC, SLDA, SLDB, SLDC) |
---|
244 | NORM_MP, KERNEL_MP = make_core_shell_parallelepiped(A, B, C, DA, DB, DC, SLDA, SLDB, SLDC, env=MPenv) |
---|
245 | elif shape == 'paracrystal': |
---|
246 | LATTICE = 'bcc' |
---|
247 | #LATTICE = 'fcc' |
---|
248 | #LATTICE = 'sc' |
---|
249 | DNN, D_FACTOR = 220, '0.06' # mpmath needs to initialize floats from string |
---|
250 | RADIUS = 40 # integer for the sake of mpf |
---|
251 | NORM, KERNEL = make_paracrystal( |
---|
252 | radius=RADIUS, dnn=DNN, d_factor=D_FACTOR, lattice=LATTICE) |
---|
253 | NORM_MP, KERNEL_MP = make_paracrystal( |
---|
254 | radius=RADIUS, dnn=DNN, d_factor=D_FACTOR, lattice=LATTICE, env=MPenv) |
---|
255 | else: |
---|
256 | raise ValueError("Unknown shape %r"%shape) |
---|
257 | |
---|
258 | # Note: hardcoded in mp_quad |
---|
259 | THETA_LOW, THETA_HIGH = 0, pi |
---|
260 | PHI_LOW, PHI_HIGH = 0, 2*pi |
---|
261 | SCALE = 1 |
---|
262 | |
---|
263 | # mathematica code for triaxial_ellipsoid (untested) |
---|
264 | _ = """ |
---|
265 | R[theta_, phi_, a_, b_, c_] := Sqrt[(a Sin[theta]Cos[phi])^2 + (b Sin[theta]Sin[phi])^2 + (c Cos[theta])^2] |
---|
266 | Sphere[q_, r_] := 3 SphericalBesselJ[q r]/(q r) |
---|
267 | V[a_, b_, c_] := 4/3 pi a b c |
---|
268 | Norm[sld_, solvent_, a_, b_, c_] := V[a, b, c] (solvent - sld)^2 |
---|
269 | F[q_, theta_, phi_, a_, b_, c_] := Sphere[q, R[theta, phi, a, b, c]] |
---|
270 | I[q_, sld_, solvent_, a_, b_, c_] := Norm[sld, solvent, a, b, c]/(4 pi) Integrate[F[q, theta, phi, a, b, c]^2 Sin[theta], {phi, 0, 2 pi}, {theta, 0, pi}] |
---|
271 | I[6/10^3, 63/10, 3, 445, 140, 47] |
---|
272 | """ |
---|
273 | |
---|
274 | # 2D integration functions |
---|
275 | def mp_quad_2d(q, shape): |
---|
276 | evals = [0] |
---|
277 | def integrand(theta, phi): |
---|
278 | evals[0] += 1 |
---|
279 | qab = q*mp.sin(theta) |
---|
280 | qa = qab*mp.cos(phi) |
---|
281 | qb = qab*mp.sin(phi) |
---|
282 | qc = q*mp.cos(theta) |
---|
283 | Zq = KERNEL_MP(qa, qb, qc)**2 |
---|
284 | return Zq*mp.sin(theta) |
---|
285 | ans = mp.quad(integrand, (0, mp.pi), (0, 2*mp.pi)) |
---|
286 | Iq = NORM_MP*ans/(4*mp.pi) |
---|
287 | return evals[0], Iq |
---|
288 | |
---|
289 | def kernel_2d(q, theta, phi): |
---|
290 | """ |
---|
291 | S(q) kernel for paracrystal forms. |
---|
292 | """ |
---|
293 | qab = q*sin(theta) |
---|
294 | qa = qab*cos(phi) |
---|
295 | qb = qab*sin(phi) |
---|
296 | qc = q*cos(theta) |
---|
297 | return NORM*KERNEL(qa, qb, qc)**2 |
---|
298 | |
---|
299 | def scipy_dblquad_2d(q): |
---|
300 | """ |
---|
301 | Compute the integral using scipy dblquad. This gets the correct answer |
---|
302 | eventually, but it is slow. |
---|
303 | """ |
---|
304 | evals = [0] |
---|
305 | def integrand(phi, theta): |
---|
306 | evals[0] += 1 |
---|
307 | Zq = kernel_2d(q, theta=theta, phi=phi) |
---|
308 | return Zq*sin(theta) |
---|
309 | ans = dblquad(integrand, THETA_LOW, THETA_HIGH, lambda x: PHI_LOW, lambda x: PHI_HIGH)[0] |
---|
310 | return evals[0], ans*SCALE/(4*pi) |
---|
311 | |
---|
312 | |
---|
313 | def scipy_romberg_2d(q): |
---|
314 | """ |
---|
315 | Compute the integral using romberg integration. This function does not |
---|
316 | complete in a reasonable time. No idea if it is accurate. |
---|
317 | """ |
---|
318 | evals = [0] |
---|
319 | def inner(phi, theta): |
---|
320 | evals[0] += 1 |
---|
321 | return kernel_2d(q, theta=theta, phi=phi) |
---|
322 | def outer(theta): |
---|
323 | Zq = romberg(inner, PHI_LOW, PHI_HIGH, divmax=100, args=(theta,)) |
---|
324 | return Zq*sin(theta) |
---|
325 | ans = romberg(outer, THETA_LOW, THETA_HIGH, divmax=100) |
---|
326 | return evals[0], ans*SCALE/(4*pi) |
---|
327 | |
---|
328 | |
---|
329 | def semi_romberg_2d(q, n=100): |
---|
330 | """ |
---|
331 | Use 1D romberg integration in phi and regular simpsons rule in theta. |
---|
332 | """ |
---|
333 | evals = [0] |
---|
334 | def inner(phi, theta): |
---|
335 | evals[0] += 1 |
---|
336 | return kernel_2d(q, theta=theta, phi=phi) |
---|
337 | theta = np.linspace(THETA_LOW, THETA_HIGH, n) |
---|
338 | Zq = [romberg(inner, PHI_LOW, PHI_HIGH, divmax=100, args=(t,)) for t in theta] |
---|
339 | ans = simps(np.array(Zq)*sin(theta), dx=theta[1]-theta[0]) |
---|
340 | return evals[0], ans*SCALE/(4*pi) |
---|
341 | |
---|
342 | def gauss_quad_2d(q, n=150): |
---|
343 | """ |
---|
344 | Compute the integral using gaussian quadrature for n = 20, 76 or 150. |
---|
345 | """ |
---|
346 | z, w = leggauss(n) |
---|
347 | theta = (THETA_HIGH-THETA_LOW)*(z + 1)/2 + THETA_LOW |
---|
348 | phi = (PHI_HIGH-PHI_LOW)*(z + 1)/2 + PHI_LOW |
---|
349 | Atheta, Aphi = np.meshgrid(theta, phi) |
---|
350 | Aw = w[None, :] * w[:, None] |
---|
351 | sin_theta = abs(sin(Atheta)) |
---|
352 | Zq = kernel_2d(q=q, theta=Atheta, phi=Aphi) |
---|
353 | # change from [-1,1] x [-1,1] range to [0, pi] x [0, 2 pi] range |
---|
354 | dxdy_stretch = (THETA_HIGH-THETA_LOW)/2 * (PHI_HIGH-PHI_LOW)/2 |
---|
355 | Iq = np.sum(Zq*Aw*sin_theta)*SCALE/(4*pi) * dxdy_stretch |
---|
356 | return n**2, Iq |
---|
357 | |
---|
358 | def gauss_quad_usub(q, n=150, dtype=DTYPE): |
---|
359 | """ |
---|
360 | Compute the integral using gaussian quadrature for n = 20, 76 or 150. |
---|
361 | |
---|
362 | Use *u = sin theta* substitution, and restrict integration over a single |
---|
363 | quadrant for shapes that are mirror symmetric about AB, AC and BC planes. |
---|
364 | |
---|
365 | Note that this doesn't work for fcc/bcc paracrystals, which instead step |
---|
366 | over the entire 4 pi surface uniformly in theta-phi. |
---|
367 | """ |
---|
368 | z, w = leggauss(n) |
---|
369 | cos_theta = 0.5 * (z + 1) |
---|
370 | theta = arccos(cos_theta) |
---|
371 | phi = pi/2*(0.5 * (z + 1)) |
---|
372 | Atheta, Aphi = np.meshgrid(theta, phi) |
---|
373 | Aw = w[None, :] * w[:, None] |
---|
374 | q, Atheta, Aphi, Aw = [np.asarray(v, dtype=dtype) for v in (q, Atheta, Aphi, Aw)] |
---|
375 | Zq = kernel_2d(q=q, theta=Atheta, phi=Aphi) |
---|
376 | Iq = np.sum(Zq*Aw)*0.25 |
---|
377 | return n**2, Iq |
---|
378 | |
---|
379 | def gridded_2d(q, n=300): |
---|
380 | """ |
---|
381 | Compute the integral on a regular grid using rectangular, trapezoidal, |
---|
382 | simpsons, and romberg integration. Romberg integration requires that |
---|
383 | the grid be of size n = 2**k + 1. |
---|
384 | """ |
---|
385 | theta = np.linspace(THETA_LOW, THETA_HIGH, n) |
---|
386 | phi = np.linspace(PHI_LOW, PHI_HIGH, n) |
---|
387 | Atheta, Aphi = np.meshgrid(theta, phi) |
---|
388 | Zq = kernel_2d(q=q, theta=Atheta, phi=Aphi) |
---|
389 | Zq *= abs(sin(Atheta)) |
---|
390 | dx, dy = theta[1]-theta[0], phi[1]-phi[0] |
---|
391 | print("rect-%d"%n, n**2, np.sum(Zq)*dx*dy*SCALE/(4*pi)) |
---|
392 | print("trapz-%d"%n, n**2, np.trapz(np.trapz(Zq, dx=dx), dx=dy)*SCALE/(4*pi)) |
---|
393 | print("simpson-%d"%n, n**2, simps(simps(Zq, dx=dx), dx=dy)*SCALE/(4*pi)) |
---|
394 | print("romb-%d"%n, n**2, romb(romb(Zq, dx=dx), dx=dy)*SCALE/(4*pi)) |
---|
395 | |
---|
396 | def plot_2d(q, n=300): |
---|
397 | """ |
---|
398 | Plot the 2D surface that needs to be integrated in order to compute |
---|
399 | the BCC S(q) at a particular q, dnn and d_factor. *n* is the number |
---|
400 | of points in the grid. |
---|
401 | """ |
---|
402 | theta = np.linspace(THETA_LOW, THETA_HIGH, n) |
---|
403 | phi = np.linspace(PHI_LOW, PHI_HIGH, n) |
---|
404 | Atheta, Aphi = np.meshgrid(theta, phi) |
---|
405 | Zq = kernel_2d(q=q, theta=Atheta, phi=Aphi) |
---|
406 | #Zq *= abs(sin(Atheta)) |
---|
407 | pylab.pcolor(degrees(theta), degrees(phi), log10(np.fmax(Zq, 1.e-6))) |
---|
408 | pylab.axis('tight') |
---|
409 | pylab.title("%s I(q,t) sin(t) for q=%g" % (KERNEL.__doc__, q)) |
---|
410 | pylab.xlabel("theta (degrees)") |
---|
411 | pylab.ylabel("phi (degrees)") |
---|
412 | cbar = pylab.colorbar() |
---|
413 | cbar.set_label('log10 S(q)') |
---|
414 | pylab.show() |
---|
415 | |
---|
416 | def main(Qstr): |
---|
417 | Q = float(Qstr) |
---|
418 | if shape == 'sphere': |
---|
419 | print("exact", NORM*sp.sas_3j1x_x(Q*RADIUS)**2) |
---|
420 | print("gauss-20", *gauss_quad_2d(Q, n=20)) |
---|
421 | print("gauss-76", *gauss_quad_2d(Q, n=76)) |
---|
422 | print("gauss-150", *gauss_quad_2d(Q, n=150)) |
---|
423 | print("gauss-500", *gauss_quad_2d(Q, n=500)) |
---|
424 | print("gauss-1025", *gauss_quad_2d(Q, n=1025)) |
---|
425 | print("gauss-2049", *gauss_quad_2d(Q, n=2049)) |
---|
426 | print("gauss-20 usub", *gauss_quad_usub(Q, n=20)) |
---|
427 | print("gauss-76 usub", *gauss_quad_usub(Q, n=76)) |
---|
428 | print("gauss-150 usub", *gauss_quad_usub(Q, n=150)) |
---|
429 | #gridded_2d(Q, n=2**8+1) |
---|
430 | gridded_2d(Q, n=2**10+1) |
---|
431 | #gridded_2d(Q, n=2**12+1) |
---|
432 | #gridded_2d(Q, n=2**15+1) |
---|
433 | if shape not in ('paracrystal', 'core_shell_parallelepiped'): |
---|
434 | # adaptive forms on models for which the calculations are fast enough |
---|
435 | print("dblquad", *scipy_dblquad_2d(Q)) |
---|
436 | print("semi-romberg-100", *semi_romberg_2d(Q, n=100)) |
---|
437 | print("romberg", *scipy_romberg_2d(Q)) |
---|
438 | with mp.workprec(100): |
---|
439 | print("mpmath", *mp_quad_2d(mp.mpf(Qstr), shape)) |
---|
440 | plot_2d(Q, n=200) |
---|
441 | |
---|
442 | if __name__ == "__main__": |
---|
443 | main(Qstr) |
---|