source: sasmodels/explore/asymint.py @ ff31782

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since ff31782 was 49eb251, checked in by Paul Kienzle <pkienzle@…>, 7 years ago

add core_shell_parallelepiped to asymint (and fix parallelepiped)

  • Property mode set to 100755
File size: 14.5 KB
RevLine 
[20fe0cd]1#!/usr/bin/env python
[4f611f1]2"""
3Asymmetric shape integration
[5110e16]4
5Usage:
6
7    explore/asymint.py [MODEL] [q-value]
8
9Computes the numerical integral over theta and phi of the given model at a
10single point q using different algorithms or the same algorithm with different
11precision.  It also displays a 2-D image of the theta-phi surface that is
12being integrated.
13
14The available models are:
15
16    triaxial_ellipsoid, parallelpiped, paracrystal, cylinder, sphere
17
18Cylinder and sphere are included as simple checks on the integration
19algorithms. Cylinder is better investigated using 1-D integration methods in
20explore/symint.py.  Sphere has an easily computed analytic value which is
21identical for all theta-phi for a given q, so it is useful for checking
22that the normalization constants are correct for the different algorithms.
[4f611f1]23"""
24
25from __future__ import print_function, division
26
27import os, sys
[20fe0cd]28sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
[4f611f1]29
30import numpy as np
[31eea1f]31import mpmath as mp
[4f611f1]32from numpy import pi, sin, cos, sqrt, exp, expm1, degrees, log10
[31eea1f]33from numpy.polynomial.legendre import leggauss
[4f611f1]34from scipy.integrate import dblquad, simps, romb, romberg
35import pylab
36
[20fe0cd]37import sasmodels.special as sp
[4f611f1]38
[20fe0cd]39# Need to parse shape early since it determines the kernel function
40# that will be used for the various integrators
41shape = 'parallelepiped' if len(sys.argv) < 2 else sys.argv[1]
42Qstr = '0.005' if len(sys.argv) < 3 else sys.argv[2]
43
44class MPenv:
[6e604f8]45    sqrt = staticmethod(mp.sqrt)
46    exp = staticmethod(mp.exp)
47    expm1 = staticmethod(mp.expm1)
48    cos = staticmethod(mp.cos)
49    sin = staticmethod(mp.sin)
50    tan = staticmethod(mp.tan)
51    @staticmethod
[20fe0cd]52    def sas_3j1x_x(x):
53        return 3*(mp.sin(x)/x - mp.cos(x))/(x*x)
[6e604f8]54    @staticmethod
[20fe0cd]55    def sas_2J1x_x(x):
56        return 2*mp.j1(x)/x
[6e604f8]57    @staticmethod
[20fe0cd]58    def sas_sinx_x(x):
59        return mp.sin(x)/x
60    pi = mp.pi
[6e604f8]61    mpf = staticmethod(mp.mpf)
[20fe0cd]62
63class NPenv:
[6e604f8]64    sqrt = staticmethod(np.sqrt)
65    exp = staticmethod(np.exp)
66    expm1 = staticmethod(np.expm1)
67    cos = staticmethod(np.cos)
68    sin = staticmethod(np.sin)
69    tan = staticmethod(np.tan)
70    sas_3j1x_x = staticmethod(sp.sas_3j1x_x)
71    sas_2J1x_x = staticmethod(sp.sas_2J1x_x)
72    sas_sinx_x = staticmethod(sp.sas_sinx_x)
[20fe0cd]73    pi = np.pi
[6e604f8]74    mpf = staticmethod(float)
[31eea1f]75
76SLD = 3
77SLD_SOLVENT = 6
[4f611f1]78CONTRAST = SLD - SLD_SOLVENT
79
[20fe0cd]80# Carefully code models so that mpmath will use full precision.  That means:
81#    * wrap inputs in env.mpf
82#    * don't use floating point constants, only integers
83#    * for division, make sure the numerator or denominator is env.mpf
84#    * use env.pi, env.sas_sinx_x, etc. for functions
85def make_parallelepiped(a, b, c, env=NPenv):
86    a, b, c = env.mpf(a), env.mpf(b), env.mpf(c)
[31eea1f]87    def Fq(qa, qb, qc):
[49eb251]88        siA = env.sas_sinx_x(a*qa/2)
89        siB = env.sas_sinx_x(b*qb/2)
90        siC = env.sas_sinx_x(c*qc/2)
[31eea1f]91        return siA * siB * siC
[20fe0cd]92    Fq.__doc__ = "parallelepiped a=%g, b=%g c=%g"%(a, b, c)
[31eea1f]93    volume = a*b*c
[20fe0cd]94    norm = CONTRAST**2*volume/10000
[31eea1f]95    return norm, Fq
96
[49eb251]97def make_core_shell_parallelepiped(a, b, c, da, db, dc, slda, sldb, sldc, env=NPenv):
98    a, b, c = env.mpf(a), env.mpf(b), env.mpf(c)
99    da, db, dc = env.mpf(da), env.mpf(db), env.mpf(dc)
100    slda, sldb, sldc = env.mpf(slda), env.mpf(sldb), env.mpf(sldc)
101    drV0 = CONTRAST*a*b*c
102    dra, drb, drc = slda-SLD_SOLVENT, sldb-SLD_SOLVENT, sldc-SLD_SOLVENT
103    Aa, Ab, Ac = b*c, a*c, a*b
104    Ta, Tb, Tc = a + 2*da, b + 2*db, c + 2*dc
105    drVa, drVb, drVc = dra*a*Aa, drb*b*Ab, drc*c*Ac
106    drVTa, drVTb, drVTc = dra*Ta*Aa, drb*Tb*Ab, drc*Tc*Ac
107    def Fq(qa, qb, qc):
108        siA = env.sas_sinx_x(a*qa/2)
109        siB = env.sas_sinx_x(b*qb/2)
110        siC = env.sas_sinx_x(c*qc/2)
111        siAt = env.sas_sinx_x(Ta*qa/2)
112        siBt = env.sas_sinx_x(Tb*qb/2)
113        siCt = env.sas_sinx_x(Tc*qc/2)
114        return (drV0*siA*siB*siC
115            + (drVTa*siAt-drVa*siA)*siB*siC
116            + siA*(drVTb*siBt-drVb*siB)*siC
117            + siA*siB*(drVTc*siCt-drVc*siC))
118    Fq.__doc__ = "core-shell parallelepiped a=%g, b=%g c=%g"%(a, b, c)
119    volume = a*b*c + 2*da*Aa + 2*db*Ab + 2*dc*Ac
120    norm = 1/(volume*10000)
121    return norm, Fq
122
[20fe0cd]123def make_triaxial_ellipsoid(a, b, c, env=NPenv):
124    a, b, c = env.mpf(a), env.mpf(b), env.mpf(c)
[31eea1f]125    def Fq(qa, qb, qc):
[20fe0cd]126        qr = env.sqrt((a*qa)**2 + (b*qb)**2 + (c*qc)**2)
127        return env.sas_3j1x_x(qr)
[1820208]128    Fq.__doc__ = "triaxial ellipsoid minor=%g, major=%g polar=%g"%(a, b, c)
[20fe0cd]129    volume = 4*env.pi*a*b*c/3
130    norm = CONTRAST**2*volume/10000
[31eea1f]131    return norm, Fq
132
[20fe0cd]133def make_cylinder(radius, length, env=NPenv):
134    radius, length = env.mpf(radius), env.mpf(length)
[31eea1f]135    def Fq(qa, qb, qc):
[20fe0cd]136        qab = env.sqrt(qa**2 + qb**2)
137        return env.sas_2J1x_x(qab*radius) * env.sas_sinx_x((qc*length)/2)
138    Fq.__doc__ = "cylinder radius=%g, length=%g"%(radius, length)
139    volume = env.pi*radius**2*length
140    norm = CONTRAST**2*volume/10000
[31eea1f]141    return norm, Fq
142
[20fe0cd]143def make_sphere(radius, env=NPenv):
144    radius = env.mpf(radius)
[31eea1f]145    def Fq(qa, qb, qc):
[20fe0cd]146        q = env.sqrt(qa**2 + qb**2 + qc**2)
147        return env.sas_3j1x_x(q*radius)
148    Fq.__doc__ = "sphere radius=%g"%(radius, )
149    volume = 4*pi*radius**3
150    norm = CONTRAST**2*volume/10000
[31eea1f]151    return norm, Fq
152
[20fe0cd]153def make_paracrystal(radius, dnn, d_factor, lattice='bcc', env=NPenv):
154    radius, dnn, d_factor = env.mpf(radius), env.mpf(dnn), env.mpf(d_factor)
155    def sc(qa, qb, qc):
156        return qa, qb, qc
157    def bcc(qa, qb, qc):
158        a1 = (+qa + qb + qc)/2
159        a2 = (-qa - qb + qc)/2
160        a3 = (-qa + qb - qc)/2
161        return a1, a2, a3
162    def fcc(qa, qb, qc):
[5110e16]163        a1 = ( 0 + qb + qc)/2
164        a2 = (-qa + 0 + qc)/2
165        a3 = (-qa + qb + 0)/2
[20fe0cd]166        return a1, a2, a3
167    lattice_fn = {'sc': sc, 'bcc': bcc, 'fcc': fcc}[lattice]
168    radius, dnn, d_factor = env.mpf(radius), env.mpf(dnn), env.mpf(d_factor)
[31eea1f]169    def Fq(qa, qb, qc):
[20fe0cd]170        a1, a2, a3 = lattice_fn(qa, qb, qc)
171        # Note: paper says that different directions can have different
172        # distoration factors.  Easy enough to add to the code.
173        arg = -(dnn*d_factor)**2*(a1**2 + a2**2 + a3**2)/2
174        exp_arg = env.exp(arg)
175        den = [((exp_arg - 2*env.cos(dnn*a))*exp_arg + 1) for a in (a1, a2, a3)]
176        Sq = -env.expm1(2*arg)**3/(den[0]*den[1]*den[2])
[31eea1f]177
[20fe0cd]178        q = env.sqrt(qa**2 + qb**2 + qc**2)
179        Fq = env.sas_3j1x_x(q*radius)
[5110e16]180        # the caller computes F(q)**2, but we need it to compute S(q)*F(q)**2
[20fe0cd]181        return env.sqrt(Sq)*Fq
182    Fq.__doc__ = "%s paracrystal a=%g da=%g r=%g"%(lattice, dnn, d_factor, radius)
183    def sphere_volume(r): return 4*env.pi*r**3/3
184    Vf = {
185        'sc': sphere_volume(radius/dnn),
186        'bcc': 2*sphere_volume(env.sqrt(3)/2*radius/dnn),
[5110e16]187        'fcc': 4*sphere_volume(1/env.sqrt(2)*radius/dnn),
[20fe0cd]188    }[lattice]
189    volume = sphere_volume(radius)
[5110e16]190    norm = CONTRAST**2*volume/10000*Vf
[31eea1f]191    return norm, Fq
[4f611f1]192
[20fe0cd]193if shape == 'sphere':
194    RADIUS = 50  # integer for the sake of mpf
195    NORM, KERNEL = make_sphere(radius=RADIUS)
196    NORM_MP, KERNEL_MP = make_sphere(radius=RADIUS, env=MPenv)
197elif shape == 'cylinder':
[31eea1f]198    #RADIUS, LENGTH = 10, 100000
199    RADIUS, LENGTH = 10, 300  # integer for the sake of mpf
200    NORM, KERNEL = make_cylinder(radius=RADIUS, length=LENGTH)
[20fe0cd]201    NORM_MP, KERNEL_MP = make_cylinder(radius=RADIUS, length=LENGTH, env=MPenv)
202elif shape == 'triaxial_ellipsoid':
[31eea1f]203    #A, B, C = 4450, 14000, 47
204    A, B, C = 445, 140, 47  # integer for the sake of mpf
[1820208]205    NORM, KERNEL = make_triaxial_ellipsoid(A, B, C)
206    NORM_MP, KERNEL_MP = make_triaxial_ellipsoid(A, B, C, env=MPenv)
[31eea1f]207elif shape == 'parallelepiped':
208    #A, B, C = 4450, 14000, 47
209    A, B, C = 445, 140, 47  # integer for the sake of mpf
210    NORM, KERNEL = make_parallelepiped(A, B, C)
[20fe0cd]211    NORM_MP, KERNEL_MP = make_parallelepiped(A, B, C, env=MPenv)
[49eb251]212elif shape == 'core_shell_parallelepiped':
213    #A, B, C = 4450, 14000, 47
214    #A, B, C = 445, 140, 47  # integer for the sake of mpf
215    A, B, C = 6800, 114, 1380
216    DA, DB, DC = 2300, 21, 58
217    SLDA, SLDB, SLDC = "5", "-0.3", "11.5"
218    if 1: # C shortest
219        B, C = C, B
220        DB, DC = DC, DB
221        SLDB, SLDC = SLDC, SLDB
222    elif 0: # C longest
223        A, C = C, A
224        DA, DC = DC, DA
225        SLDA, SLDC = SLDC, SLDA
226    NORM, KERNEL = make_core_shell_parallelepiped(A, B, C, DA, DB, DC, SLDA, SLDB, SLDC)
227    NORM_MP, KERNEL_MP = make_core_shell_parallelepiped(A, B, C, DA, DB, DC, SLDA, SLDB, SLDC, env=MPenv)
[20fe0cd]228elif shape == 'paracrystal':
229    LATTICE = 'bcc'
230    #LATTICE = 'fcc'
231    #LATTICE = 'sc'
232    DNN, D_FACTOR = 220, '0.06'  # mpmath needs to initialize floats from string
233    RADIUS = 40  # integer for the sake of mpf
234    NORM, KERNEL = make_paracrystal(
235        radius=RADIUS, dnn=DNN, d_factor=D_FACTOR, lattice=LATTICE)
236    NORM_MP, KERNEL_MP = make_paracrystal(
237        radius=RADIUS, dnn=DNN, d_factor=D_FACTOR, lattice=LATTICE, env=MPenv)
[31eea1f]238else:
239    raise ValueError("Unknown shape %r"%shape)
[4f611f1]240
[20fe0cd]241# Note: hardcoded in mp_quad
[4f611f1]242THETA_LOW, THETA_HIGH = 0, pi
243PHI_LOW, PHI_HIGH = 0, 2*pi
244SCALE = 1
245
[31eea1f]246# mathematica code for triaxial_ellipsoid (untested)
247_ = """
248R[theta_, phi_, a_, b_, c_] := Sqrt[(a Sin[theta]Cos[phi])^2 + (b Sin[theta]Sin[phi])^2 + (c Cos[theta])^2]
249Sphere[q_, r_] := 3 SphericalBesselJ[q r]/(q r)
250V[a_, b_, c_] := 4/3 pi a b c
251Norm[sld_, solvent_, a_, b_, c_] := V[a, b, c] (solvent - sld)^2
252F[q_, theta_, phi_, a_, b_, c_] := Sphere[q, R[theta, phi, a, b, c]]
253I[q_, sld_, solvent_, a_, b_, c_] := Norm[sld, solvent, a, b, c]/(4 pi) Integrate[F[q, theta, phi, a, b, c]^2 Sin[theta], {phi, 0, 2 pi}, {theta, 0, pi}]
254I[6/10^3, 63/10, 3, 445, 140, 47]
255"""
256
[20fe0cd]257# 2D integration functions
258def mp_quad_2d(q, shape):
[31eea1f]259    evals = [0]
260    def integrand(theta, phi):
261        evals[0] += 1
262        qab = q*mp.sin(theta)
263        qa = qab*mp.cos(phi)
264        qb = qab*mp.sin(phi)
265        qc = q*mp.cos(theta)
266        Zq = KERNEL_MP(qa, qb, qc)**2
267        return Zq*mp.sin(theta)
268    ans = mp.quad(integrand, (0, mp.pi), (0, 2*mp.pi))
269    Iq = NORM_MP*ans/(4*mp.pi)
270    return evals[0], Iq
[4f611f1]271
[20fe0cd]272def kernel_2d(q, theta, phi):
[4f611f1]273    """
274    S(q) kernel for paracrystal forms.
275    """
276    qab = q*sin(theta)
277    qa = qab*cos(phi)
278    qb = qab*sin(phi)
279    qc = q*cos(theta)
280    return NORM*KERNEL(qa, qb, qc)**2
281
[20fe0cd]282def scipy_dblquad_2d(q):
[4f611f1]283    """
284    Compute the integral using scipy dblquad.  This gets the correct answer
285    eventually, but it is slow.
286    """
287    evals = [0]
[31eea1f]288    def integrand(phi, theta):
[4f611f1]289        evals[0] += 1
[20fe0cd]290        Zq = kernel_2d(q, theta=theta, phi=phi)
[4f611f1]291        return Zq*sin(theta)
[31eea1f]292    ans = dblquad(integrand, THETA_LOW, THETA_HIGH, lambda x: PHI_LOW, lambda x: PHI_HIGH)[0]
293    return evals[0], ans*SCALE/(4*pi)
[4f611f1]294
295
296def scipy_romberg_2d(q):
297    """
298    Compute the integral using romberg integration.  This function does not
299    complete in a reasonable time.  No idea if it is accurate.
300    """
[31eea1f]301    evals = [0]
[4f611f1]302    def inner(phi, theta):
[31eea1f]303        evals[0] += 1
[20fe0cd]304        return kernel_2d(q, theta=theta, phi=phi)
[4f611f1]305    def outer(theta):
[31eea1f]306        Zq = romberg(inner, PHI_LOW, PHI_HIGH, divmax=100, args=(theta,))
307        return Zq*sin(theta)
308    ans = romberg(outer, THETA_LOW, THETA_HIGH, divmax=100)
309    return evals[0], ans*SCALE/(4*pi)
[4f611f1]310
311
[20fe0cd]312def semi_romberg_2d(q, n=100):
[4f611f1]313    """
314    Use 1D romberg integration in phi and regular simpsons rule in theta.
315    """
316    evals = [0]
317    def inner(phi, theta):
318        evals[0] += 1
[20fe0cd]319        return kernel_2d(q, theta=theta, phi=phi)
[4f611f1]320    theta = np.linspace(THETA_LOW, THETA_HIGH, n)
[31eea1f]321    Zq = [romberg(inner, PHI_LOW, PHI_HIGH, divmax=100, args=(t,)) for t in theta]
322    ans = simps(np.array(Zq)*sin(theta), dx=theta[1]-theta[0])
323    return evals[0], ans*SCALE/(4*pi)
[4f611f1]324
[20fe0cd]325def gauss_quad_2d(q, n=150):
[4f611f1]326    """
327    Compute the integral using gaussian quadrature for n = 20, 76 or 150.
328    """
[20fe0cd]329    z, w = leggauss(n)
[4f611f1]330    theta = (THETA_HIGH-THETA_LOW)*(z + 1)/2 + THETA_LOW
331    phi = (PHI_HIGH-PHI_LOW)*(z + 1)/2 + PHI_LOW
332    Atheta, Aphi = np.meshgrid(theta, phi)
333    Aw = w[None, :] * w[:, None]
[31eea1f]334    sin_theta = abs(sin(Atheta))
[20fe0cd]335    Zq = kernel_2d(q=q, theta=Atheta, phi=Aphi)
[31eea1f]336    # change from [-1,1] x [-1,1] range to [0, pi] x [0, 2 pi] range
337    dxdy_stretch = (THETA_HIGH-THETA_LOW)/2 * (PHI_HIGH-PHI_LOW)/2
338    Iq = np.sum(Zq*Aw*sin_theta)*SCALE/(4*pi) * dxdy_stretch
339    return n**2, Iq
[4f611f1]340
[20fe0cd]341def gridded_2d(q, n=300):
[4f611f1]342    """
343    Compute the integral on a regular grid using rectangular, trapezoidal,
344    simpsons, and romberg integration.  Romberg integration requires that
345    the grid be of size n = 2**k + 1.
346    """
347    theta = np.linspace(THETA_LOW, THETA_HIGH, n)
348    phi = np.linspace(PHI_LOW, PHI_HIGH, n)
349    Atheta, Aphi = np.meshgrid(theta, phi)
[20fe0cd]350    Zq = kernel_2d(q=q, theta=Atheta, phi=Aphi)
[4f611f1]351    Zq *= abs(sin(Atheta))
352    dx, dy = theta[1]-theta[0], phi[1]-phi[0]
[31eea1f]353    print("rect-%d"%n, n**2, np.sum(Zq)*dx*dy*SCALE/(4*pi))
354    print("trapz-%d"%n, n**2, np.trapz(np.trapz(Zq, dx=dx), dx=dy)*SCALE/(4*pi))
355    print("simpson-%d"%n, n**2, simps(simps(Zq, dx=dx), dx=dy)*SCALE/(4*pi))
356    print("romb-%d"%n, n**2, romb(romb(Zq, dx=dx), dx=dy)*SCALE/(4*pi))
[4f611f1]357
[20fe0cd]358def plot_2d(q, n=300):
[4f611f1]359    """
360    Plot the 2D surface that needs to be integrated in order to compute
361    the BCC S(q) at a particular q, dnn and d_factor.  *n* is the number
362    of points in the grid.
363    """
364    theta = np.linspace(THETA_LOW, THETA_HIGH, n)
365    phi = np.linspace(PHI_LOW, PHI_HIGH, n)
366    Atheta, Aphi = np.meshgrid(theta, phi)
[20fe0cd]367    Zq = kernel_2d(q=q, theta=Atheta, phi=Aphi)
[4f611f1]368    #Zq *= abs(sin(Atheta))
369    pylab.pcolor(degrees(theta), degrees(phi), log10(np.fmax(Zq, 1.e-6)))
370    pylab.axis('tight')
[20fe0cd]371    pylab.title("%s I(q,t) sin(t) for q=%g" % (KERNEL.__doc__, q))
[4f611f1]372    pylab.xlabel("theta (degrees)")
373    pylab.ylabel("phi (degrees)")
374    cbar = pylab.colorbar()
375    cbar.set_label('log10 S(q)')
376    pylab.show()
377
[20fe0cd]378def main(Qstr):
[31eea1f]379    Q = float(Qstr)
380    if shape == 'sphere':
[1820208]381        print("exact", NORM*sp.sas_3j1x_x(Q*RADIUS)**2)
[20fe0cd]382    print("gauss-20", *gauss_quad_2d(Q, n=20))
383    print("gauss-76", *gauss_quad_2d(Q, n=76))
384    print("gauss-150", *gauss_quad_2d(Q, n=150))
385    print("gauss-500", *gauss_quad_2d(Q, n=500))
[49eb251]386    print("gauss-1025", *gauss_quad_2d(Q, n=1025))
387    print("gauss-2049", *gauss_quad_2d(Q, n=2049))
[20fe0cd]388    #gridded_2d(Q, n=2**8+1)
389    gridded_2d(Q, n=2**10+1)
[49eb251]390    #gridded_2d(Q, n=2**12+1)
[20fe0cd]391    #gridded_2d(Q, n=2**15+1)
[49eb251]392    if shape not in ('paracrystal', 'core_shell_parallelepiped'):
393        # adaptive forms on models for which the calculations are fast enough
[20fe0cd]394        print("dblquad", *scipy_dblquad_2d(Q))
395        print("semi-romberg-100", *semi_romberg_2d(Q, n=100))
396        print("romberg", *scipy_romberg_2d(Q))
397        with mp.workprec(100):
398            print("mpmath", *mp_quad_2d(mp.mpf(Qstr), shape))
399    plot_2d(Q, n=200)
400
401if __name__ == "__main__":
402    main(Qstr)
Note: See TracBrowser for help on using the repository browser.