[4f611f1] | 1 | """ |
---|
| 2 | Asymmetric shape integration |
---|
| 3 | """ |
---|
| 4 | |
---|
| 5 | from __future__ import print_function, division |
---|
| 6 | |
---|
| 7 | import os, sys |
---|
| 8 | sys.path.insert(0, os.path.dirname(os.path.dirname(__file__))) |
---|
| 9 | |
---|
| 10 | import numpy as np |
---|
| 11 | from numpy import pi, sin, cos, sqrt, exp, expm1, degrees, log10 |
---|
| 12 | from scipy.integrate import dblquad, simps, romb, romberg |
---|
| 13 | import pylab |
---|
| 14 | |
---|
| 15 | from sasmodels.special import square |
---|
| 16 | from sasmodels.special import Gauss20Wt, Gauss20Z |
---|
| 17 | from sasmodels.special import Gauss76Wt, Gauss76Z |
---|
| 18 | from sasmodels.special import Gauss150Wt, Gauss150Z |
---|
| 19 | from sasmodels.special import sas_2J1x_x, sas_sinx_x, sas_3j1x_x |
---|
| 20 | |
---|
| 21 | SLD = 3.0 |
---|
| 22 | SLD_SOLVENT = 6.3 |
---|
| 23 | CONTRAST = SLD - SLD_SOLVENT |
---|
| 24 | |
---|
| 25 | def make_cylinder(radius, length): |
---|
| 26 | def cylinder(qa, qb, qc): |
---|
| 27 | qab = sqrt(qa**2 + qb**2) |
---|
| 28 | return sas_2J1x_x(qab*radius) * sas_sinx_x(qc*0.5*length) |
---|
| 29 | volume = pi*radius**2*length |
---|
| 30 | norm = 1e-4*volume*CONTRAST**2 |
---|
| 31 | return norm, cylinder |
---|
| 32 | |
---|
| 33 | def make_sphere(radius): |
---|
| 34 | def sphere(qa, qb, qc): |
---|
| 35 | qab = sqrt(qa**2 + qb**2) |
---|
| 36 | q = sqrt(qab**2 + qc**2) |
---|
| 37 | return sas_3j1x_x(q*radius) |
---|
| 38 | volume = 4*pi*radius**3/3 |
---|
| 39 | norm = 1e-4*volume*CONTRAST**2 |
---|
| 40 | return norm, sphere |
---|
| 41 | |
---|
| 42 | #NORM, KERNEL = make_cylinder(radius=10., length=100000.) |
---|
| 43 | NORM, KERNEL = make_cylinder(radius=10., length=30.) |
---|
| 44 | #NORM, KERNEL = make_sphere(radius=50.) |
---|
| 45 | |
---|
| 46 | THETA_LOW, THETA_HIGH = 0, pi |
---|
| 47 | PHI_LOW, PHI_HIGH = 0, 2*pi |
---|
| 48 | SCALE = 1 |
---|
| 49 | |
---|
| 50 | |
---|
| 51 | def kernel(q, theta, phi): |
---|
| 52 | """ |
---|
| 53 | S(q) kernel for paracrystal forms. |
---|
| 54 | """ |
---|
| 55 | qab = q*sin(theta) |
---|
| 56 | qa = qab*cos(phi) |
---|
| 57 | qb = qab*sin(phi) |
---|
| 58 | qc = q*cos(theta) |
---|
| 59 | return NORM*KERNEL(qa, qb, qc)**2 |
---|
| 60 | |
---|
| 61 | |
---|
| 62 | def scipy_dblquad(q): |
---|
| 63 | """ |
---|
| 64 | Compute the integral using scipy dblquad. This gets the correct answer |
---|
| 65 | eventually, but it is slow. |
---|
| 66 | """ |
---|
| 67 | evals = [0] |
---|
| 68 | def integrand(theta, phi): |
---|
| 69 | evals[0] += 1 |
---|
| 70 | Zq = kernel(q, theta=theta, phi=phi) |
---|
| 71 | return Zq*sin(theta) |
---|
| 72 | ans = dblquad(integrand, THETA_LOW, THETA_HIGH, lambda x: PHI_LOW, lambda x: PHI_HIGH)[0]*SCALE/(4*pi) |
---|
| 73 | print("dblquad evals =", evals[0]) |
---|
| 74 | return ans |
---|
| 75 | |
---|
| 76 | |
---|
| 77 | def scipy_romberg_2d(q): |
---|
| 78 | """ |
---|
| 79 | Compute the integral using romberg integration. This function does not |
---|
| 80 | complete in a reasonable time. No idea if it is accurate. |
---|
| 81 | """ |
---|
| 82 | def inner(phi, theta): |
---|
| 83 | return kernel(q, theta=theta, phi=phi) |
---|
| 84 | def outer(theta): |
---|
| 85 | return romberg(inner, PHI_LOW, PHI_HIGH, divmax=100, args=(theta,))*sin(theta) |
---|
| 86 | return romberg(outer, THETA_LOW, THETA_HIGH, divmax=100)*SCALE/(4*pi) |
---|
| 87 | |
---|
| 88 | |
---|
| 89 | def semi_romberg(q, n=100): |
---|
| 90 | """ |
---|
| 91 | Use 1D romberg integration in phi and regular simpsons rule in theta. |
---|
| 92 | """ |
---|
| 93 | evals = [0] |
---|
| 94 | def inner(phi, theta): |
---|
| 95 | evals[0] += 1 |
---|
| 96 | return kernel(q, theta=theta, phi=phi) |
---|
| 97 | theta = np.linspace(THETA_LOW, THETA_HIGH, n) |
---|
| 98 | f_phi = [romberg(inner, PHI_LOW, PHI_HIGH, divmax=100, args=(t,)) |
---|
| 99 | for t in theta] |
---|
| 100 | ans = simps(sin(theta)*np.array(f_phi), dx=theta[1]-theta[0]) |
---|
| 101 | print("semi romberg evals =", evals[0]) |
---|
| 102 | return ans*SCALE/(4*pi) |
---|
| 103 | |
---|
| 104 | def gauss_quad(q, n=150): |
---|
| 105 | """ |
---|
| 106 | Compute the integral using gaussian quadrature for n = 20, 76 or 150. |
---|
| 107 | """ |
---|
| 108 | if n == 20: |
---|
| 109 | z, w = Gauss20Z, Gauss20Wt |
---|
| 110 | elif n == 76: |
---|
| 111 | z, w = Gauss76Z, Gauss76Wt |
---|
| 112 | else: |
---|
| 113 | z, w = Gauss150Z, Gauss150Wt |
---|
| 114 | theta = (THETA_HIGH-THETA_LOW)*(z + 1)/2 + THETA_LOW |
---|
| 115 | phi = (PHI_HIGH-PHI_LOW)*(z + 1)/2 + PHI_LOW |
---|
| 116 | Atheta, Aphi = np.meshgrid(theta, phi) |
---|
| 117 | Aw = w[None, :] * w[:, None] |
---|
| 118 | sin_theta = np.fmax(abs(sin(Atheta)), 1e-6) |
---|
| 119 | Zq = kernel(q=q, theta=Atheta, phi=Aphi) |
---|
| 120 | print("gauss %d evals ="%n, n**2) |
---|
| 121 | return np.sum(Zq*Aw*sin_theta)*SCALE/(4*pi) |
---|
| 122 | |
---|
| 123 | |
---|
| 124 | def gridded_integrals(q, n=300): |
---|
| 125 | """ |
---|
| 126 | Compute the integral on a regular grid using rectangular, trapezoidal, |
---|
| 127 | simpsons, and romberg integration. Romberg integration requires that |
---|
| 128 | the grid be of size n = 2**k + 1. |
---|
| 129 | """ |
---|
| 130 | theta = np.linspace(THETA_LOW, THETA_HIGH, n) |
---|
| 131 | phi = np.linspace(PHI_LOW, PHI_HIGH, n) |
---|
| 132 | Atheta, Aphi = np.meshgrid(theta, phi) |
---|
| 133 | Zq = kernel(q=q, theta=Atheta, phi=Aphi) |
---|
| 134 | Zq *= abs(sin(Atheta)) |
---|
| 135 | dx, dy = theta[1]-theta[0], phi[1]-phi[0] |
---|
| 136 | print("rect", n, np.sum(Zq)*dx*dy*SCALE/(4*pi)) |
---|
| 137 | print("trapz", n, np.trapz(np.trapz(Zq, dx=dx), dx=dy)*SCALE/(4*pi)) |
---|
| 138 | print("simpson", n, simps(simps(Zq, dx=dx), dx=dy)*SCALE/(4*pi)) |
---|
| 139 | print("romb", n, romb(romb(Zq, dx=dx), dx=dy)*SCALE/(4*pi)) |
---|
| 140 | print("gridded %d evals ="%n, n**2) |
---|
| 141 | |
---|
| 142 | def plot(q, n=300): |
---|
| 143 | """ |
---|
| 144 | Plot the 2D surface that needs to be integrated in order to compute |
---|
| 145 | the BCC S(q) at a particular q, dnn and d_factor. *n* is the number |
---|
| 146 | of points in the grid. |
---|
| 147 | """ |
---|
| 148 | theta = np.linspace(THETA_LOW, THETA_HIGH, n) |
---|
| 149 | phi = np.linspace(PHI_LOW, PHI_HIGH, n) |
---|
| 150 | Atheta, Aphi = np.meshgrid(theta, phi) |
---|
| 151 | Zq = kernel(q=q, theta=Atheta, phi=Aphi) |
---|
| 152 | #Zq *= abs(sin(Atheta)) |
---|
| 153 | pylab.pcolor(degrees(theta), degrees(phi), log10(np.fmax(Zq, 1.e-6))) |
---|
| 154 | pylab.axis('tight') |
---|
| 155 | pylab.title("%s Z(q) for q=%g" % (KERNEL.__name__, q)) |
---|
| 156 | pylab.xlabel("theta (degrees)") |
---|
| 157 | pylab.ylabel("phi (degrees)") |
---|
| 158 | cbar = pylab.colorbar() |
---|
| 159 | cbar.set_label('log10 S(q)') |
---|
| 160 | pylab.show() |
---|
| 161 | |
---|
| 162 | if __name__ == "__main__": |
---|
| 163 | Q = 0.8 |
---|
| 164 | print("gauss", 20, gauss_quad(Q, n=20)) |
---|
| 165 | print("gauss", 76, gauss_quad(Q, n=76)) |
---|
| 166 | print("gauss", 150, gauss_quad(Q, n=150)) |
---|
| 167 | #print("dblquad", scipy_dblquad(Q)) |
---|
| 168 | #print("semi romberg", semi_romberg(Q)) |
---|
| 169 | #gridded_integrals(Q, n=2**8+1) |
---|
| 170 | #gridded_integrals(Q, n=2**10+1) |
---|
| 171 | #gridded_integrals(Q, n=2**13+1) |
---|
| 172 | #print("romberg", scipy_romberg(Q)) |
---|
| 173 | plot(Q, n=400) |
---|