source: sasmodels/explore/asymint.py @ ef07e95

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since ef07e95 was 1820208, checked in by Paul Kienzle <pkienzle@…>, 7 years ago

asymint: fix sphere exact calc, and triaxial ellipsoid

  • Property mode set to 100755
File size: 12.6 KB
RevLine 
[20fe0cd]1#!/usr/bin/env python
[4f611f1]2"""
3Asymmetric shape integration
[5110e16]4
5Usage:
6
7    explore/asymint.py [MODEL] [q-value]
8
9Computes the numerical integral over theta and phi of the given model at a
10single point q using different algorithms or the same algorithm with different
11precision.  It also displays a 2-D image of the theta-phi surface that is
12being integrated.
13
14The available models are:
15
16    triaxial_ellipsoid, parallelpiped, paracrystal, cylinder, sphere
17
18Cylinder and sphere are included as simple checks on the integration
19algorithms. Cylinder is better investigated using 1-D integration methods in
20explore/symint.py.  Sphere has an easily computed analytic value which is
21identical for all theta-phi for a given q, so it is useful for checking
22that the normalization constants are correct for the different algorithms.
[4f611f1]23"""
24
25from __future__ import print_function, division
26
27import os, sys
[20fe0cd]28sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
[4f611f1]29
30import numpy as np
[31eea1f]31import mpmath as mp
[4f611f1]32from numpy import pi, sin, cos, sqrt, exp, expm1, degrees, log10
[31eea1f]33from numpy.polynomial.legendre import leggauss
[4f611f1]34from scipy.integrate import dblquad, simps, romb, romberg
35import pylab
36
[20fe0cd]37import sasmodels.special as sp
[4f611f1]38
[20fe0cd]39# Need to parse shape early since it determines the kernel function
40# that will be used for the various integrators
41shape = 'parallelepiped' if len(sys.argv) < 2 else sys.argv[1]
42Qstr = '0.005' if len(sys.argv) < 3 else sys.argv[2]
43
44class MPenv:
[6e604f8]45    sqrt = staticmethod(mp.sqrt)
46    exp = staticmethod(mp.exp)
47    expm1 = staticmethod(mp.expm1)
48    cos = staticmethod(mp.cos)
49    sin = staticmethod(mp.sin)
50    tan = staticmethod(mp.tan)
51    @staticmethod
[20fe0cd]52    def sas_3j1x_x(x):
53        return 3*(mp.sin(x)/x - mp.cos(x))/(x*x)
[6e604f8]54    @staticmethod
[20fe0cd]55    def sas_2J1x_x(x):
56        return 2*mp.j1(x)/x
[6e604f8]57    @staticmethod
[20fe0cd]58    def sas_sinx_x(x):
59        return mp.sin(x)/x
60    pi = mp.pi
[6e604f8]61    mpf = staticmethod(mp.mpf)
[20fe0cd]62
63class NPenv:
[6e604f8]64    sqrt = staticmethod(np.sqrt)
65    exp = staticmethod(np.exp)
66    expm1 = staticmethod(np.expm1)
67    cos = staticmethod(np.cos)
68    sin = staticmethod(np.sin)
69    tan = staticmethod(np.tan)
70    sas_3j1x_x = staticmethod(sp.sas_3j1x_x)
71    sas_2J1x_x = staticmethod(sp.sas_2J1x_x)
72    sas_sinx_x = staticmethod(sp.sas_sinx_x)
[20fe0cd]73    pi = np.pi
[6e604f8]74    mpf = staticmethod(float)
[31eea1f]75
76SLD = 3
77SLD_SOLVENT = 6
[4f611f1]78CONTRAST = SLD - SLD_SOLVENT
79
[20fe0cd]80# Carefully code models so that mpmath will use full precision.  That means:
81#    * wrap inputs in env.mpf
82#    * don't use floating point constants, only integers
83#    * for division, make sure the numerator or denominator is env.mpf
84#    * use env.pi, env.sas_sinx_x, etc. for functions
85def make_parallelepiped(a, b, c, env=NPenv):
86    a, b, c = env.mpf(a), env.mpf(b), env.mpf(c)
[31eea1f]87    def Fq(qa, qb, qc):
[20fe0cd]88        siA = env.sas_sinx_x(0.5*a*qa/2)
89        siB = env.sas_sinx_x(0.5*b*qb/2)
90        siC = env.sas_sinx_x(0.5*c*qc/2)
[31eea1f]91        return siA * siB * siC
[20fe0cd]92    Fq.__doc__ = "parallelepiped a=%g, b=%g c=%g"%(a, b, c)
[31eea1f]93    volume = a*b*c
[20fe0cd]94    norm = CONTRAST**2*volume/10000
[31eea1f]95    return norm, Fq
96
[20fe0cd]97def make_triaxial_ellipsoid(a, b, c, env=NPenv):
98    a, b, c = env.mpf(a), env.mpf(b), env.mpf(c)
[31eea1f]99    def Fq(qa, qb, qc):
[20fe0cd]100        qr = env.sqrt((a*qa)**2 + (b*qb)**2 + (c*qc)**2)
101        return env.sas_3j1x_x(qr)
[1820208]102    Fq.__doc__ = "triaxial ellipsoid minor=%g, major=%g polar=%g"%(a, b, c)
[20fe0cd]103    volume = 4*env.pi*a*b*c/3
104    norm = CONTRAST**2*volume/10000
[31eea1f]105    return norm, Fq
106
[20fe0cd]107def make_cylinder(radius, length, env=NPenv):
108    radius, length = env.mpf(radius), env.mpf(length)
[31eea1f]109    def Fq(qa, qb, qc):
[20fe0cd]110        qab = env.sqrt(qa**2 + qb**2)
111        return env.sas_2J1x_x(qab*radius) * env.sas_sinx_x((qc*length)/2)
112    Fq.__doc__ = "cylinder radius=%g, length=%g"%(radius, length)
113    volume = env.pi*radius**2*length
114    norm = CONTRAST**2*volume/10000
[31eea1f]115    return norm, Fq
116
[20fe0cd]117def make_sphere(radius, env=NPenv):
118    radius = env.mpf(radius)
[31eea1f]119    def Fq(qa, qb, qc):
[20fe0cd]120        q = env.sqrt(qa**2 + qb**2 + qc**2)
121        return env.sas_3j1x_x(q*radius)
122    Fq.__doc__ = "sphere radius=%g"%(radius, )
123    volume = 4*pi*radius**3
124    norm = CONTRAST**2*volume/10000
[31eea1f]125    return norm, Fq
126
[20fe0cd]127def make_paracrystal(radius, dnn, d_factor, lattice='bcc', env=NPenv):
128    radius, dnn, d_factor = env.mpf(radius), env.mpf(dnn), env.mpf(d_factor)
129    def sc(qa, qb, qc):
130        return qa, qb, qc
131    def bcc(qa, qb, qc):
132        a1 = (+qa + qb + qc)/2
133        a2 = (-qa - qb + qc)/2
134        a3 = (-qa + qb - qc)/2
135        return a1, a2, a3
136    def fcc(qa, qb, qc):
[5110e16]137        a1 = ( 0 + qb + qc)/2
138        a2 = (-qa + 0 + qc)/2
139        a3 = (-qa + qb + 0)/2
[20fe0cd]140        return a1, a2, a3
141    lattice_fn = {'sc': sc, 'bcc': bcc, 'fcc': fcc}[lattice]
142    radius, dnn, d_factor = env.mpf(radius), env.mpf(dnn), env.mpf(d_factor)
[31eea1f]143    def Fq(qa, qb, qc):
[20fe0cd]144        a1, a2, a3 = lattice_fn(qa, qb, qc)
145        # Note: paper says that different directions can have different
146        # distoration factors.  Easy enough to add to the code.
147        arg = -(dnn*d_factor)**2*(a1**2 + a2**2 + a3**2)/2
148        exp_arg = env.exp(arg)
149        den = [((exp_arg - 2*env.cos(dnn*a))*exp_arg + 1) for a in (a1, a2, a3)]
150        Sq = -env.expm1(2*arg)**3/(den[0]*den[1]*den[2])
[31eea1f]151
[20fe0cd]152        q = env.sqrt(qa**2 + qb**2 + qc**2)
153        Fq = env.sas_3j1x_x(q*radius)
[5110e16]154        # the caller computes F(q)**2, but we need it to compute S(q)*F(q)**2
[20fe0cd]155        return env.sqrt(Sq)*Fq
156    Fq.__doc__ = "%s paracrystal a=%g da=%g r=%g"%(lattice, dnn, d_factor, radius)
157    def sphere_volume(r): return 4*env.pi*r**3/3
158    Vf = {
159        'sc': sphere_volume(radius/dnn),
160        'bcc': 2*sphere_volume(env.sqrt(3)/2*radius/dnn),
[5110e16]161        'fcc': 4*sphere_volume(1/env.sqrt(2)*radius/dnn),
[20fe0cd]162    }[lattice]
163    volume = sphere_volume(radius)
[5110e16]164    norm = CONTRAST**2*volume/10000*Vf
[31eea1f]165    return norm, Fq
[4f611f1]166
[20fe0cd]167if shape == 'sphere':
168    RADIUS = 50  # integer for the sake of mpf
169    NORM, KERNEL = make_sphere(radius=RADIUS)
170    NORM_MP, KERNEL_MP = make_sphere(radius=RADIUS, env=MPenv)
171elif shape == 'cylinder':
[31eea1f]172    #RADIUS, LENGTH = 10, 100000
173    RADIUS, LENGTH = 10, 300  # integer for the sake of mpf
174    NORM, KERNEL = make_cylinder(radius=RADIUS, length=LENGTH)
[20fe0cd]175    NORM_MP, KERNEL_MP = make_cylinder(radius=RADIUS, length=LENGTH, env=MPenv)
176elif shape == 'triaxial_ellipsoid':
[31eea1f]177    #A, B, C = 4450, 14000, 47
178    A, B, C = 445, 140, 47  # integer for the sake of mpf
[1820208]179    NORM, KERNEL = make_triaxial_ellipsoid(A, B, C)
180    NORM_MP, KERNEL_MP = make_triaxial_ellipsoid(A, B, C, env=MPenv)
[31eea1f]181elif shape == 'parallelepiped':
182    #A, B, C = 4450, 14000, 47
183    A, B, C = 445, 140, 47  # integer for the sake of mpf
184    NORM, KERNEL = make_parallelepiped(A, B, C)
[20fe0cd]185    NORM_MP, KERNEL_MP = make_parallelepiped(A, B, C, env=MPenv)
186elif shape == 'paracrystal':
187    LATTICE = 'bcc'
188    #LATTICE = 'fcc'
189    #LATTICE = 'sc'
190    DNN, D_FACTOR = 220, '0.06'  # mpmath needs to initialize floats from string
191    RADIUS = 40  # integer for the sake of mpf
192    NORM, KERNEL = make_paracrystal(
193        radius=RADIUS, dnn=DNN, d_factor=D_FACTOR, lattice=LATTICE)
194    NORM_MP, KERNEL_MP = make_paracrystal(
195        radius=RADIUS, dnn=DNN, d_factor=D_FACTOR, lattice=LATTICE, env=MPenv)
[31eea1f]196else:
197    raise ValueError("Unknown shape %r"%shape)
[4f611f1]198
[20fe0cd]199# Note: hardcoded in mp_quad
[4f611f1]200THETA_LOW, THETA_HIGH = 0, pi
201PHI_LOW, PHI_HIGH = 0, 2*pi
202SCALE = 1
203
[31eea1f]204# mathematica code for triaxial_ellipsoid (untested)
205_ = """
206R[theta_, phi_, a_, b_, c_] := Sqrt[(a Sin[theta]Cos[phi])^2 + (b Sin[theta]Sin[phi])^2 + (c Cos[theta])^2]
207Sphere[q_, r_] := 3 SphericalBesselJ[q r]/(q r)
208V[a_, b_, c_] := 4/3 pi a b c
209Norm[sld_, solvent_, a_, b_, c_] := V[a, b, c] (solvent - sld)^2
210F[q_, theta_, phi_, a_, b_, c_] := Sphere[q, R[theta, phi, a, b, c]]
211I[q_, sld_, solvent_, a_, b_, c_] := Norm[sld, solvent, a, b, c]/(4 pi) Integrate[F[q, theta, phi, a, b, c]^2 Sin[theta], {phi, 0, 2 pi}, {theta, 0, pi}]
212I[6/10^3, 63/10, 3, 445, 140, 47]
213"""
214
[20fe0cd]215# 2D integration functions
216def mp_quad_2d(q, shape):
[31eea1f]217    evals = [0]
218    def integrand(theta, phi):
219        evals[0] += 1
220        qab = q*mp.sin(theta)
221        qa = qab*mp.cos(phi)
222        qb = qab*mp.sin(phi)
223        qc = q*mp.cos(theta)
224        Zq = KERNEL_MP(qa, qb, qc)**2
225        return Zq*mp.sin(theta)
226    ans = mp.quad(integrand, (0, mp.pi), (0, 2*mp.pi))
227    Iq = NORM_MP*ans/(4*mp.pi)
228    return evals[0], Iq
[4f611f1]229
[20fe0cd]230def kernel_2d(q, theta, phi):
[4f611f1]231    """
232    S(q) kernel for paracrystal forms.
233    """
234    qab = q*sin(theta)
235    qa = qab*cos(phi)
236    qb = qab*sin(phi)
237    qc = q*cos(theta)
238    return NORM*KERNEL(qa, qb, qc)**2
239
[20fe0cd]240def scipy_dblquad_2d(q):
[4f611f1]241    """
242    Compute the integral using scipy dblquad.  This gets the correct answer
243    eventually, but it is slow.
244    """
245    evals = [0]
[31eea1f]246    def integrand(phi, theta):
[4f611f1]247        evals[0] += 1
[20fe0cd]248        Zq = kernel_2d(q, theta=theta, phi=phi)
[4f611f1]249        return Zq*sin(theta)
[31eea1f]250    ans = dblquad(integrand, THETA_LOW, THETA_HIGH, lambda x: PHI_LOW, lambda x: PHI_HIGH)[0]
251    return evals[0], ans*SCALE/(4*pi)
[4f611f1]252
253
254def scipy_romberg_2d(q):
255    """
256    Compute the integral using romberg integration.  This function does not
257    complete in a reasonable time.  No idea if it is accurate.
258    """
[31eea1f]259    evals = [0]
[4f611f1]260    def inner(phi, theta):
[31eea1f]261        evals[0] += 1
[20fe0cd]262        return kernel_2d(q, theta=theta, phi=phi)
[4f611f1]263    def outer(theta):
[31eea1f]264        Zq = romberg(inner, PHI_LOW, PHI_HIGH, divmax=100, args=(theta,))
265        return Zq*sin(theta)
266    ans = romberg(outer, THETA_LOW, THETA_HIGH, divmax=100)
267    return evals[0], ans*SCALE/(4*pi)
[4f611f1]268
269
[20fe0cd]270def semi_romberg_2d(q, n=100):
[4f611f1]271    """
272    Use 1D romberg integration in phi and regular simpsons rule in theta.
273    """
274    evals = [0]
275    def inner(phi, theta):
276        evals[0] += 1
[20fe0cd]277        return kernel_2d(q, theta=theta, phi=phi)
[4f611f1]278    theta = np.linspace(THETA_LOW, THETA_HIGH, n)
[31eea1f]279    Zq = [romberg(inner, PHI_LOW, PHI_HIGH, divmax=100, args=(t,)) for t in theta]
280    ans = simps(np.array(Zq)*sin(theta), dx=theta[1]-theta[0])
281    return evals[0], ans*SCALE/(4*pi)
[4f611f1]282
[20fe0cd]283def gauss_quad_2d(q, n=150):
[4f611f1]284    """
285    Compute the integral using gaussian quadrature for n = 20, 76 or 150.
286    """
[20fe0cd]287    z, w = leggauss(n)
[4f611f1]288    theta = (THETA_HIGH-THETA_LOW)*(z + 1)/2 + THETA_LOW
289    phi = (PHI_HIGH-PHI_LOW)*(z + 1)/2 + PHI_LOW
290    Atheta, Aphi = np.meshgrid(theta, phi)
291    Aw = w[None, :] * w[:, None]
[31eea1f]292    sin_theta = abs(sin(Atheta))
[20fe0cd]293    Zq = kernel_2d(q=q, theta=Atheta, phi=Aphi)
[31eea1f]294    # change from [-1,1] x [-1,1] range to [0, pi] x [0, 2 pi] range
295    dxdy_stretch = (THETA_HIGH-THETA_LOW)/2 * (PHI_HIGH-PHI_LOW)/2
296    Iq = np.sum(Zq*Aw*sin_theta)*SCALE/(4*pi) * dxdy_stretch
297    return n**2, Iq
[4f611f1]298
[20fe0cd]299def gridded_2d(q, n=300):
[4f611f1]300    """
301    Compute the integral on a regular grid using rectangular, trapezoidal,
302    simpsons, and romberg integration.  Romberg integration requires that
303    the grid be of size n = 2**k + 1.
304    """
305    theta = np.linspace(THETA_LOW, THETA_HIGH, n)
306    phi = np.linspace(PHI_LOW, PHI_HIGH, n)
307    Atheta, Aphi = np.meshgrid(theta, phi)
[20fe0cd]308    Zq = kernel_2d(q=q, theta=Atheta, phi=Aphi)
[4f611f1]309    Zq *= abs(sin(Atheta))
310    dx, dy = theta[1]-theta[0], phi[1]-phi[0]
[31eea1f]311    print("rect-%d"%n, n**2, np.sum(Zq)*dx*dy*SCALE/(4*pi))
312    print("trapz-%d"%n, n**2, np.trapz(np.trapz(Zq, dx=dx), dx=dy)*SCALE/(4*pi))
313    print("simpson-%d"%n, n**2, simps(simps(Zq, dx=dx), dx=dy)*SCALE/(4*pi))
314    print("romb-%d"%n, n**2, romb(romb(Zq, dx=dx), dx=dy)*SCALE/(4*pi))
[4f611f1]315
[20fe0cd]316def plot_2d(q, n=300):
[4f611f1]317    """
318    Plot the 2D surface that needs to be integrated in order to compute
319    the BCC S(q) at a particular q, dnn and d_factor.  *n* is the number
320    of points in the grid.
321    """
322    theta = np.linspace(THETA_LOW, THETA_HIGH, n)
323    phi = np.linspace(PHI_LOW, PHI_HIGH, n)
324    Atheta, Aphi = np.meshgrid(theta, phi)
[20fe0cd]325    Zq = kernel_2d(q=q, theta=Atheta, phi=Aphi)
[4f611f1]326    #Zq *= abs(sin(Atheta))
327    pylab.pcolor(degrees(theta), degrees(phi), log10(np.fmax(Zq, 1.e-6)))
328    pylab.axis('tight')
[20fe0cd]329    pylab.title("%s I(q,t) sin(t) for q=%g" % (KERNEL.__doc__, q))
[4f611f1]330    pylab.xlabel("theta (degrees)")
331    pylab.ylabel("phi (degrees)")
332    cbar = pylab.colorbar()
333    cbar.set_label('log10 S(q)')
334    pylab.show()
335
[20fe0cd]336def main(Qstr):
[31eea1f]337    Q = float(Qstr)
338    if shape == 'sphere':
[1820208]339        print("exact", NORM*sp.sas_3j1x_x(Q*RADIUS)**2)
[20fe0cd]340    print("gauss-20", *gauss_quad_2d(Q, n=20))
341    print("gauss-76", *gauss_quad_2d(Q, n=76))
342    print("gauss-150", *gauss_quad_2d(Q, n=150))
343    print("gauss-500", *gauss_quad_2d(Q, n=500))
344    #gridded_2d(Q, n=2**8+1)
345    gridded_2d(Q, n=2**10+1)
346    #gridded_2d(Q, n=2**13+1)
347    #gridded_2d(Q, n=2**15+1)
348    if shape != 'paracrystal':  # adaptive forms are too slow!
349        print("dblquad", *scipy_dblquad_2d(Q))
350        print("semi-romberg-100", *semi_romberg_2d(Q, n=100))
351        print("romberg", *scipy_romberg_2d(Q))
352        with mp.workprec(100):
353            print("mpmath", *mp_quad_2d(mp.mpf(Qstr), shape))
354    plot_2d(Q, n=200)
355
356if __name__ == "__main__":
357    main(Qstr)
Note: See TracBrowser for help on using the repository browser.