source: sasmodels/explore/asymint.py @ e077231

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since e077231 was a1c32c2, checked in by Paul Kienzle <pkienzle@…>, 7 years ago

Use gauss-legendre integration for cross-checking against P(r)

  • Property mode set to 100755
File size: 14.8 KB
RevLine 
[20fe0cd]1#!/usr/bin/env python
[4f611f1]2"""
3Asymmetric shape integration
[5110e16]4
5Usage:
6
7    explore/asymint.py [MODEL] [q-value]
8
9Computes the numerical integral over theta and phi of the given model at a
10single point q using different algorithms or the same algorithm with different
11precision.  It also displays a 2-D image of the theta-phi surface that is
12being integrated.
13
14The available models are:
15
16    triaxial_ellipsoid, parallelpiped, paracrystal, cylinder, sphere
17
18Cylinder and sphere are included as simple checks on the integration
19algorithms. Cylinder is better investigated using 1-D integration methods in
20explore/symint.py.  Sphere has an easily computed analytic value which is
21identical for all theta-phi for a given q, so it is useful for checking
22that the normalization constants are correct for the different algorithms.
[4f611f1]23"""
24
25from __future__ import print_function, division
26
27import os, sys
[20fe0cd]28sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
[4f611f1]29
30import numpy as np
[31eea1f]31import mpmath as mp
[4f611f1]32from numpy import pi, sin, cos, sqrt, exp, expm1, degrees, log10
[31eea1f]33from numpy.polynomial.legendre import leggauss
[4f611f1]34from scipy.integrate import dblquad, simps, romb, romberg
35import pylab
36
[20fe0cd]37import sasmodels.special as sp
[4f611f1]38
[20fe0cd]39# Need to parse shape early since it determines the kernel function
40# that will be used for the various integrators
41shape = 'parallelepiped' if len(sys.argv) < 2 else sys.argv[1]
42Qstr = '0.005' if len(sys.argv) < 3 else sys.argv[2]
43
44class MPenv:
[6e604f8]45    sqrt = staticmethod(mp.sqrt)
46    exp = staticmethod(mp.exp)
47    expm1 = staticmethod(mp.expm1)
48    cos = staticmethod(mp.cos)
49    sin = staticmethod(mp.sin)
50    tan = staticmethod(mp.tan)
51    @staticmethod
[20fe0cd]52    def sas_3j1x_x(x):
53        return 3*(mp.sin(x)/x - mp.cos(x))/(x*x)
[6e604f8]54    @staticmethod
[20fe0cd]55    def sas_2J1x_x(x):
56        return 2*mp.j1(x)/x
[6e604f8]57    @staticmethod
[20fe0cd]58    def sas_sinx_x(x):
59        return mp.sin(x)/x
60    pi = mp.pi
[6e604f8]61    mpf = staticmethod(mp.mpf)
[20fe0cd]62
63class NPenv:
[6e604f8]64    sqrt = staticmethod(np.sqrt)
65    exp = staticmethod(np.exp)
66    expm1 = staticmethod(np.expm1)
67    cos = staticmethod(np.cos)
68    sin = staticmethod(np.sin)
69    tan = staticmethod(np.tan)
70    sas_3j1x_x = staticmethod(sp.sas_3j1x_x)
71    sas_2J1x_x = staticmethod(sp.sas_2J1x_x)
72    sas_sinx_x = staticmethod(sp.sas_sinx_x)
[20fe0cd]73    pi = np.pi
[6e604f8]74    mpf = staticmethod(float)
[31eea1f]75
76SLD = 3
77SLD_SOLVENT = 6
[4f611f1]78CONTRAST = SLD - SLD_SOLVENT
79
[20fe0cd]80# Carefully code models so that mpmath will use full precision.  That means:
81#    * wrap inputs in env.mpf
82#    * don't use floating point constants, only integers
83#    * for division, make sure the numerator or denominator is env.mpf
84#    * use env.pi, env.sas_sinx_x, etc. for functions
85def make_parallelepiped(a, b, c, env=NPenv):
86    a, b, c = env.mpf(a), env.mpf(b), env.mpf(c)
[31eea1f]87    def Fq(qa, qb, qc):
[49eb251]88        siA = env.sas_sinx_x(a*qa/2)
89        siB = env.sas_sinx_x(b*qb/2)
90        siC = env.sas_sinx_x(c*qc/2)
[31eea1f]91        return siA * siB * siC
[20fe0cd]92    Fq.__doc__ = "parallelepiped a=%g, b=%g c=%g"%(a, b, c)
[31eea1f]93    volume = a*b*c
[20fe0cd]94    norm = CONTRAST**2*volume/10000
[31eea1f]95    return norm, Fq
96
[49eb251]97def make_core_shell_parallelepiped(a, b, c, da, db, dc, slda, sldb, sldc, env=NPenv):
[a189283]98    overlapping = False
[49eb251]99    a, b, c = env.mpf(a), env.mpf(b), env.mpf(c)
100    da, db, dc = env.mpf(da), env.mpf(db), env.mpf(dc)
101    slda, sldb, sldc = env.mpf(slda), env.mpf(sldb), env.mpf(sldc)
[a189283]102    dr0 = CONTRAST
103    drA, drB, drC = slda-SLD_SOLVENT, sldb-SLD_SOLVENT, sldc-SLD_SOLVENT
104    tA, tB, tC = a + 2*da, b + 2*db, c + 2*dc
[49eb251]105    def Fq(qa, qb, qc):
[a189283]106        siA = a*env.sas_sinx_x(a*qa/2)
107        siB = b*env.sas_sinx_x(b*qb/2)
108        siC = c*env.sas_sinx_x(c*qc/2)
109        siAt = tA*env.sas_sinx_x(tA*qa/2)
110        siBt = tB*env.sas_sinx_x(tB*qb/2)
111        siCt = tC*env.sas_sinx_x(tC*qc/2)
112        if overlapping:
113            return (dr0*siA*siB*siC
114                    + drA*(siAt-siA)*siB*siC
115                    + drB*siAt*(siBt-siB)*siC
116                    + drC*siAt*siBt*(siCt-siC))
117        else:
118            return (dr0*siA*siB*siC
119                    + drA*(siAt-siA)*siB*siC
120                    + drB*siA*(siBt-siB)*siC
121                    + drC*siA*siB*(siCt-siC))
[49eb251]122    Fq.__doc__ = "core-shell parallelepiped a=%g, b=%g c=%g"%(a, b, c)
[a189283]123    if overlapping:
124        volume = a*b*c + 2*da*b*c + 2*tA*db*c + 2*tA*tB*dc
125    else:
126        volume = a*b*c + 2*da*b*c + 2*a*db*c + 2*a*b*dc
[49eb251]127    norm = 1/(volume*10000)
128    return norm, Fq
129
[20fe0cd]130def make_triaxial_ellipsoid(a, b, c, env=NPenv):
131    a, b, c = env.mpf(a), env.mpf(b), env.mpf(c)
[31eea1f]132    def Fq(qa, qb, qc):
[20fe0cd]133        qr = env.sqrt((a*qa)**2 + (b*qb)**2 + (c*qc)**2)
134        return env.sas_3j1x_x(qr)
[1820208]135    Fq.__doc__ = "triaxial ellipsoid minor=%g, major=%g polar=%g"%(a, b, c)
[20fe0cd]136    volume = 4*env.pi*a*b*c/3
137    norm = CONTRAST**2*volume/10000
[31eea1f]138    return norm, Fq
139
[20fe0cd]140def make_cylinder(radius, length, env=NPenv):
141    radius, length = env.mpf(radius), env.mpf(length)
[31eea1f]142    def Fq(qa, qb, qc):
[20fe0cd]143        qab = env.sqrt(qa**2 + qb**2)
144        return env.sas_2J1x_x(qab*radius) * env.sas_sinx_x((qc*length)/2)
145    Fq.__doc__ = "cylinder radius=%g, length=%g"%(radius, length)
146    volume = env.pi*radius**2*length
147    norm = CONTRAST**2*volume/10000
[31eea1f]148    return norm, Fq
149
[20fe0cd]150def make_sphere(radius, env=NPenv):
151    radius = env.mpf(radius)
[31eea1f]152    def Fq(qa, qb, qc):
[20fe0cd]153        q = env.sqrt(qa**2 + qb**2 + qc**2)
154        return env.sas_3j1x_x(q*radius)
155    Fq.__doc__ = "sphere radius=%g"%(radius, )
156    volume = 4*pi*radius**3
157    norm = CONTRAST**2*volume/10000
[31eea1f]158    return norm, Fq
159
[20fe0cd]160def make_paracrystal(radius, dnn, d_factor, lattice='bcc', env=NPenv):
161    radius, dnn, d_factor = env.mpf(radius), env.mpf(dnn), env.mpf(d_factor)
162    def sc(qa, qb, qc):
163        return qa, qb, qc
164    def bcc(qa, qb, qc):
165        a1 = (+qa + qb + qc)/2
166        a2 = (-qa - qb + qc)/2
167        a3 = (-qa + qb - qc)/2
168        return a1, a2, a3
169    def fcc(qa, qb, qc):
[5110e16]170        a1 = ( 0 + qb + qc)/2
171        a2 = (-qa + 0 + qc)/2
172        a3 = (-qa + qb + 0)/2
[20fe0cd]173        return a1, a2, a3
174    lattice_fn = {'sc': sc, 'bcc': bcc, 'fcc': fcc}[lattice]
175    radius, dnn, d_factor = env.mpf(radius), env.mpf(dnn), env.mpf(d_factor)
[31eea1f]176    def Fq(qa, qb, qc):
[20fe0cd]177        a1, a2, a3 = lattice_fn(qa, qb, qc)
178        # Note: paper says that different directions can have different
179        # distoration factors.  Easy enough to add to the code.
180        arg = -(dnn*d_factor)**2*(a1**2 + a2**2 + a3**2)/2
181        exp_arg = env.exp(arg)
182        den = [((exp_arg - 2*env.cos(dnn*a))*exp_arg + 1) for a in (a1, a2, a3)]
183        Sq = -env.expm1(2*arg)**3/(den[0]*den[1]*den[2])
[31eea1f]184
[20fe0cd]185        q = env.sqrt(qa**2 + qb**2 + qc**2)
186        Fq = env.sas_3j1x_x(q*radius)
[5110e16]187        # the caller computes F(q)**2, but we need it to compute S(q)*F(q)**2
[20fe0cd]188        return env.sqrt(Sq)*Fq
189    Fq.__doc__ = "%s paracrystal a=%g da=%g r=%g"%(lattice, dnn, d_factor, radius)
190    def sphere_volume(r): return 4*env.pi*r**3/3
191    Vf = {
192        'sc': sphere_volume(radius/dnn),
193        'bcc': 2*sphere_volume(env.sqrt(3)/2*radius/dnn),
[5110e16]194        'fcc': 4*sphere_volume(1/env.sqrt(2)*radius/dnn),
[20fe0cd]195    }[lattice]
196    volume = sphere_volume(radius)
[5110e16]197    norm = CONTRAST**2*volume/10000*Vf
[31eea1f]198    return norm, Fq
[4f611f1]199
[20fe0cd]200if shape == 'sphere':
201    RADIUS = 50  # integer for the sake of mpf
202    NORM, KERNEL = make_sphere(radius=RADIUS)
203    NORM_MP, KERNEL_MP = make_sphere(radius=RADIUS, env=MPenv)
204elif shape == 'cylinder':
[31eea1f]205    #RADIUS, LENGTH = 10, 100000
206    RADIUS, LENGTH = 10, 300  # integer for the sake of mpf
207    NORM, KERNEL = make_cylinder(radius=RADIUS, length=LENGTH)
[20fe0cd]208    NORM_MP, KERNEL_MP = make_cylinder(radius=RADIUS, length=LENGTH, env=MPenv)
209elif shape == 'triaxial_ellipsoid':
[31eea1f]210    #A, B, C = 4450, 14000, 47
211    A, B, C = 445, 140, 47  # integer for the sake of mpf
[1820208]212    NORM, KERNEL = make_triaxial_ellipsoid(A, B, C)
213    NORM_MP, KERNEL_MP = make_triaxial_ellipsoid(A, B, C, env=MPenv)
[31eea1f]214elif shape == 'parallelepiped':
215    #A, B, C = 4450, 14000, 47
216    A, B, C = 445, 140, 47  # integer for the sake of mpf
217    NORM, KERNEL = make_parallelepiped(A, B, C)
[20fe0cd]218    NORM_MP, KERNEL_MP = make_parallelepiped(A, B, C, env=MPenv)
[49eb251]219elif shape == 'core_shell_parallelepiped':
220    #A, B, C = 4450, 14000, 47
221    #A, B, C = 445, 140, 47  # integer for the sake of mpf
222    A, B, C = 6800, 114, 1380
223    DA, DB, DC = 2300, 21, 58
224    SLDA, SLDB, SLDC = "5", "-0.3", "11.5"
[a1c32c2]225    #A,B,C,DA,DB,DC,SLDA,SLDB,SLDC = 10,20,30,100,200,300,1,2,3
226    #SLD_SOLVENT,CONTRAST = 0, 4
[49eb251]227    if 1: # C shortest
228        B, C = C, B
229        DB, DC = DC, DB
230        SLDB, SLDC = SLDC, SLDB
231    elif 0: # C longest
232        A, C = C, A
233        DA, DC = DC, DA
234        SLDA, SLDC = SLDC, SLDA
235    NORM, KERNEL = make_core_shell_parallelepiped(A, B, C, DA, DB, DC, SLDA, SLDB, SLDC)
236    NORM_MP, KERNEL_MP = make_core_shell_parallelepiped(A, B, C, DA, DB, DC, SLDA, SLDB, SLDC, env=MPenv)
[20fe0cd]237elif shape == 'paracrystal':
238    LATTICE = 'bcc'
239    #LATTICE = 'fcc'
240    #LATTICE = 'sc'
241    DNN, D_FACTOR = 220, '0.06'  # mpmath needs to initialize floats from string
242    RADIUS = 40  # integer for the sake of mpf
243    NORM, KERNEL = make_paracrystal(
244        radius=RADIUS, dnn=DNN, d_factor=D_FACTOR, lattice=LATTICE)
245    NORM_MP, KERNEL_MP = make_paracrystal(
246        radius=RADIUS, dnn=DNN, d_factor=D_FACTOR, lattice=LATTICE, env=MPenv)
[31eea1f]247else:
248    raise ValueError("Unknown shape %r"%shape)
[4f611f1]249
[20fe0cd]250# Note: hardcoded in mp_quad
[4f611f1]251THETA_LOW, THETA_HIGH = 0, pi
252PHI_LOW, PHI_HIGH = 0, 2*pi
253SCALE = 1
254
[31eea1f]255# mathematica code for triaxial_ellipsoid (untested)
256_ = """
257R[theta_, phi_, a_, b_, c_] := Sqrt[(a Sin[theta]Cos[phi])^2 + (b Sin[theta]Sin[phi])^2 + (c Cos[theta])^2]
258Sphere[q_, r_] := 3 SphericalBesselJ[q r]/(q r)
259V[a_, b_, c_] := 4/3 pi a b c
260Norm[sld_, solvent_, a_, b_, c_] := V[a, b, c] (solvent - sld)^2
261F[q_, theta_, phi_, a_, b_, c_] := Sphere[q, R[theta, phi, a, b, c]]
262I[q_, sld_, solvent_, a_, b_, c_] := Norm[sld, solvent, a, b, c]/(4 pi) Integrate[F[q, theta, phi, a, b, c]^2 Sin[theta], {phi, 0, 2 pi}, {theta, 0, pi}]
263I[6/10^3, 63/10, 3, 445, 140, 47]
264"""
265
[20fe0cd]266# 2D integration functions
267def mp_quad_2d(q, shape):
[31eea1f]268    evals = [0]
269    def integrand(theta, phi):
270        evals[0] += 1
271        qab = q*mp.sin(theta)
272        qa = qab*mp.cos(phi)
273        qb = qab*mp.sin(phi)
274        qc = q*mp.cos(theta)
275        Zq = KERNEL_MP(qa, qb, qc)**2
276        return Zq*mp.sin(theta)
277    ans = mp.quad(integrand, (0, mp.pi), (0, 2*mp.pi))
278    Iq = NORM_MP*ans/(4*mp.pi)
279    return evals[0], Iq
[4f611f1]280
[20fe0cd]281def kernel_2d(q, theta, phi):
[4f611f1]282    """
283    S(q) kernel for paracrystal forms.
284    """
285    qab = q*sin(theta)
286    qa = qab*cos(phi)
287    qb = qab*sin(phi)
288    qc = q*cos(theta)
289    return NORM*KERNEL(qa, qb, qc)**2
290
[20fe0cd]291def scipy_dblquad_2d(q):
[4f611f1]292    """
293    Compute the integral using scipy dblquad.  This gets the correct answer
294    eventually, but it is slow.
295    """
296    evals = [0]
[31eea1f]297    def integrand(phi, theta):
[4f611f1]298        evals[0] += 1
[20fe0cd]299        Zq = kernel_2d(q, theta=theta, phi=phi)
[4f611f1]300        return Zq*sin(theta)
[31eea1f]301    ans = dblquad(integrand, THETA_LOW, THETA_HIGH, lambda x: PHI_LOW, lambda x: PHI_HIGH)[0]
302    return evals[0], ans*SCALE/(4*pi)
[4f611f1]303
304
305def scipy_romberg_2d(q):
306    """
307    Compute the integral using romberg integration.  This function does not
308    complete in a reasonable time.  No idea if it is accurate.
309    """
[31eea1f]310    evals = [0]
[4f611f1]311    def inner(phi, theta):
[31eea1f]312        evals[0] += 1
[20fe0cd]313        return kernel_2d(q, theta=theta, phi=phi)
[4f611f1]314    def outer(theta):
[31eea1f]315        Zq = romberg(inner, PHI_LOW, PHI_HIGH, divmax=100, args=(theta,))
316        return Zq*sin(theta)
317    ans = romberg(outer, THETA_LOW, THETA_HIGH, divmax=100)
318    return evals[0], ans*SCALE/(4*pi)
[4f611f1]319
320
[20fe0cd]321def semi_romberg_2d(q, n=100):
[4f611f1]322    """
323    Use 1D romberg integration in phi and regular simpsons rule in theta.
324    """
325    evals = [0]
326    def inner(phi, theta):
327        evals[0] += 1
[20fe0cd]328        return kernel_2d(q, theta=theta, phi=phi)
[4f611f1]329    theta = np.linspace(THETA_LOW, THETA_HIGH, n)
[31eea1f]330    Zq = [romberg(inner, PHI_LOW, PHI_HIGH, divmax=100, args=(t,)) for t in theta]
331    ans = simps(np.array(Zq)*sin(theta), dx=theta[1]-theta[0])
332    return evals[0], ans*SCALE/(4*pi)
[4f611f1]333
[20fe0cd]334def gauss_quad_2d(q, n=150):
[4f611f1]335    """
336    Compute the integral using gaussian quadrature for n = 20, 76 or 150.
337    """
[20fe0cd]338    z, w = leggauss(n)
[4f611f1]339    theta = (THETA_HIGH-THETA_LOW)*(z + 1)/2 + THETA_LOW
340    phi = (PHI_HIGH-PHI_LOW)*(z + 1)/2 + PHI_LOW
341    Atheta, Aphi = np.meshgrid(theta, phi)
342    Aw = w[None, :] * w[:, None]
[31eea1f]343    sin_theta = abs(sin(Atheta))
[20fe0cd]344    Zq = kernel_2d(q=q, theta=Atheta, phi=Aphi)
[31eea1f]345    # change from [-1,1] x [-1,1] range to [0, pi] x [0, 2 pi] range
346    dxdy_stretch = (THETA_HIGH-THETA_LOW)/2 * (PHI_HIGH-PHI_LOW)/2
347    Iq = np.sum(Zq*Aw*sin_theta)*SCALE/(4*pi) * dxdy_stretch
348    return n**2, Iq
[4f611f1]349
[20fe0cd]350def gridded_2d(q, n=300):
[4f611f1]351    """
352    Compute the integral on a regular grid using rectangular, trapezoidal,
353    simpsons, and romberg integration.  Romberg integration requires that
354    the grid be of size n = 2**k + 1.
355    """
356    theta = np.linspace(THETA_LOW, THETA_HIGH, n)
357    phi = np.linspace(PHI_LOW, PHI_HIGH, n)
358    Atheta, Aphi = np.meshgrid(theta, phi)
[20fe0cd]359    Zq = kernel_2d(q=q, theta=Atheta, phi=Aphi)
[4f611f1]360    Zq *= abs(sin(Atheta))
361    dx, dy = theta[1]-theta[0], phi[1]-phi[0]
[31eea1f]362    print("rect-%d"%n, n**2, np.sum(Zq)*dx*dy*SCALE/(4*pi))
363    print("trapz-%d"%n, n**2, np.trapz(np.trapz(Zq, dx=dx), dx=dy)*SCALE/(4*pi))
364    print("simpson-%d"%n, n**2, simps(simps(Zq, dx=dx), dx=dy)*SCALE/(4*pi))
365    print("romb-%d"%n, n**2, romb(romb(Zq, dx=dx), dx=dy)*SCALE/(4*pi))
[4f611f1]366
[20fe0cd]367def plot_2d(q, n=300):
[4f611f1]368    """
369    Plot the 2D surface that needs to be integrated in order to compute
370    the BCC S(q) at a particular q, dnn and d_factor.  *n* is the number
371    of points in the grid.
372    """
373    theta = np.linspace(THETA_LOW, THETA_HIGH, n)
374    phi = np.linspace(PHI_LOW, PHI_HIGH, n)
375    Atheta, Aphi = np.meshgrid(theta, phi)
[20fe0cd]376    Zq = kernel_2d(q=q, theta=Atheta, phi=Aphi)
[4f611f1]377    #Zq *= abs(sin(Atheta))
378    pylab.pcolor(degrees(theta), degrees(phi), log10(np.fmax(Zq, 1.e-6)))
379    pylab.axis('tight')
[20fe0cd]380    pylab.title("%s I(q,t) sin(t) for q=%g" % (KERNEL.__doc__, q))
[4f611f1]381    pylab.xlabel("theta (degrees)")
382    pylab.ylabel("phi (degrees)")
383    cbar = pylab.colorbar()
384    cbar.set_label('log10 S(q)')
385    pylab.show()
386
[20fe0cd]387def main(Qstr):
[31eea1f]388    Q = float(Qstr)
389    if shape == 'sphere':
[1820208]390        print("exact", NORM*sp.sas_3j1x_x(Q*RADIUS)**2)
[20fe0cd]391    print("gauss-20", *gauss_quad_2d(Q, n=20))
392    print("gauss-76", *gauss_quad_2d(Q, n=76))
393    print("gauss-150", *gauss_quad_2d(Q, n=150))
394    print("gauss-500", *gauss_quad_2d(Q, n=500))
[49eb251]395    print("gauss-1025", *gauss_quad_2d(Q, n=1025))
396    print("gauss-2049", *gauss_quad_2d(Q, n=2049))
[20fe0cd]397    #gridded_2d(Q, n=2**8+1)
398    gridded_2d(Q, n=2**10+1)
[49eb251]399    #gridded_2d(Q, n=2**12+1)
[20fe0cd]400    #gridded_2d(Q, n=2**15+1)
[49eb251]401    if shape not in ('paracrystal', 'core_shell_parallelepiped'):
402        # adaptive forms on models for which the calculations are fast enough
[20fe0cd]403        print("dblquad", *scipy_dblquad_2d(Q))
404        print("semi-romberg-100", *semi_romberg_2d(Q, n=100))
405        print("romberg", *scipy_romberg_2d(Q))
406        with mp.workprec(100):
407            print("mpmath", *mp_quad_2d(mp.mpf(Qstr), shape))
408    plot_2d(Q, n=200)
409
410if __name__ == "__main__":
411    main(Qstr)
Note: See TracBrowser for help on using the repository browser.