source: sasmodels/explore/asymint.py @ 4476951

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 4476951 was c462169, checked in by Paul Kienzle <pkienzle@…>, 7 years ago

show u-sub integration as used in models in explore/asymint.py

  • Property mode set to 100755
File size: 16.1 KB
RevLine 
[20fe0cd]1#!/usr/bin/env python
[4f611f1]2"""
3Asymmetric shape integration
[5110e16]4
5Usage:
6
7    explore/asymint.py [MODEL] [q-value]
8
9Computes the numerical integral over theta and phi of the given model at a
10single point q using different algorithms or the same algorithm with different
11precision.  It also displays a 2-D image of the theta-phi surface that is
12being integrated.
13
14The available models are:
15
16    triaxial_ellipsoid, parallelpiped, paracrystal, cylinder, sphere
17
18Cylinder and sphere are included as simple checks on the integration
19algorithms. Cylinder is better investigated using 1-D integration methods in
20explore/symint.py.  Sphere has an easily computed analytic value which is
21identical for all theta-phi for a given q, so it is useful for checking
22that the normalization constants are correct for the different algorithms.
[4f611f1]23"""
24
25from __future__ import print_function, division
26
27import os, sys
[20fe0cd]28sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
[4f611f1]29
30import numpy as np
[31eea1f]31import mpmath as mp
[c462169]32from numpy import pi, sin, cos, sqrt, exp, expm1, degrees, log10, arccos
[31eea1f]33from numpy.polynomial.legendre import leggauss
[4f611f1]34from scipy.integrate import dblquad, simps, romb, romberg
35import pylab
36
[20fe0cd]37import sasmodels.special as sp
[4f611f1]38
[20fe0cd]39# Need to parse shape early since it determines the kernel function
40# that will be used for the various integrators
41shape = 'parallelepiped' if len(sys.argv) < 2 else sys.argv[1]
42Qstr = '0.005' if len(sys.argv) < 3 else sys.argv[2]
43
[c462169]44DTYPE = 'd'
45
[20fe0cd]46class MPenv:
[6e604f8]47    sqrt = staticmethod(mp.sqrt)
48    exp = staticmethod(mp.exp)
49    expm1 = staticmethod(mp.expm1)
50    cos = staticmethod(mp.cos)
51    sin = staticmethod(mp.sin)
52    tan = staticmethod(mp.tan)
53    @staticmethod
[20fe0cd]54    def sas_3j1x_x(x):
55        return 3*(mp.sin(x)/x - mp.cos(x))/(x*x)
[6e604f8]56    @staticmethod
[20fe0cd]57    def sas_2J1x_x(x):
58        return 2*mp.j1(x)/x
[6e604f8]59    @staticmethod
[20fe0cd]60    def sas_sinx_x(x):
61        return mp.sin(x)/x
62    pi = mp.pi
[6e604f8]63    mpf = staticmethod(mp.mpf)
[20fe0cd]64
65class NPenv:
[6e604f8]66    sqrt = staticmethod(np.sqrt)
67    exp = staticmethod(np.exp)
68    expm1 = staticmethod(np.expm1)
69    cos = staticmethod(np.cos)
70    sin = staticmethod(np.sin)
71    tan = staticmethod(np.tan)
72    sas_3j1x_x = staticmethod(sp.sas_3j1x_x)
73    sas_2J1x_x = staticmethod(sp.sas_2J1x_x)
74    sas_sinx_x = staticmethod(sp.sas_sinx_x)
[20fe0cd]75    pi = np.pi
[c462169]76    #mpf = staticmethod(float)
77    mpf = staticmethod(lambda x: np.array(x, DTYPE))
[31eea1f]78
79SLD = 3
80SLD_SOLVENT = 6
[4f611f1]81CONTRAST = SLD - SLD_SOLVENT
82
[20fe0cd]83# Carefully code models so that mpmath will use full precision.  That means:
84#    * wrap inputs in env.mpf
85#    * don't use floating point constants, only integers
86#    * for division, make sure the numerator or denominator is env.mpf
87#    * use env.pi, env.sas_sinx_x, etc. for functions
88def make_parallelepiped(a, b, c, env=NPenv):
89    a, b, c = env.mpf(a), env.mpf(b), env.mpf(c)
[31eea1f]90    def Fq(qa, qb, qc):
[49eb251]91        siA = env.sas_sinx_x(a*qa/2)
92        siB = env.sas_sinx_x(b*qb/2)
93        siC = env.sas_sinx_x(c*qc/2)
[31eea1f]94        return siA * siB * siC
[20fe0cd]95    Fq.__doc__ = "parallelepiped a=%g, b=%g c=%g"%(a, b, c)
[31eea1f]96    volume = a*b*c
[20fe0cd]97    norm = CONTRAST**2*volume/10000
[31eea1f]98    return norm, Fq
99
[49eb251]100def make_core_shell_parallelepiped(a, b, c, da, db, dc, slda, sldb, sldc, env=NPenv):
[a189283]101    overlapping = False
[49eb251]102    a, b, c = env.mpf(a), env.mpf(b), env.mpf(c)
103    da, db, dc = env.mpf(da), env.mpf(db), env.mpf(dc)
104    slda, sldb, sldc = env.mpf(slda), env.mpf(sldb), env.mpf(sldc)
[a189283]105    dr0 = CONTRAST
106    drA, drB, drC = slda-SLD_SOLVENT, sldb-SLD_SOLVENT, sldc-SLD_SOLVENT
107    tA, tB, tC = a + 2*da, b + 2*db, c + 2*dc
[49eb251]108    def Fq(qa, qb, qc):
[a189283]109        siA = a*env.sas_sinx_x(a*qa/2)
110        siB = b*env.sas_sinx_x(b*qb/2)
111        siC = c*env.sas_sinx_x(c*qc/2)
112        siAt = tA*env.sas_sinx_x(tA*qa/2)
113        siBt = tB*env.sas_sinx_x(tB*qb/2)
114        siCt = tC*env.sas_sinx_x(tC*qc/2)
115        if overlapping:
116            return (dr0*siA*siB*siC
117                    + drA*(siAt-siA)*siB*siC
118                    + drB*siAt*(siBt-siB)*siC
119                    + drC*siAt*siBt*(siCt-siC))
120        else:
121            return (dr0*siA*siB*siC
122                    + drA*(siAt-siA)*siB*siC
123                    + drB*siA*(siBt-siB)*siC
124                    + drC*siA*siB*(siCt-siC))
[49eb251]125    Fq.__doc__ = "core-shell parallelepiped a=%g, b=%g c=%g"%(a, b, c)
[a189283]126    if overlapping:
127        volume = a*b*c + 2*da*b*c + 2*tA*db*c + 2*tA*tB*dc
128    else:
129        volume = a*b*c + 2*da*b*c + 2*a*db*c + 2*a*b*dc
[49eb251]130    norm = 1/(volume*10000)
131    return norm, Fq
132
[20fe0cd]133def make_triaxial_ellipsoid(a, b, c, env=NPenv):
134    a, b, c = env.mpf(a), env.mpf(b), env.mpf(c)
[31eea1f]135    def Fq(qa, qb, qc):
[20fe0cd]136        qr = env.sqrt((a*qa)**2 + (b*qb)**2 + (c*qc)**2)
137        return env.sas_3j1x_x(qr)
[1820208]138    Fq.__doc__ = "triaxial ellipsoid minor=%g, major=%g polar=%g"%(a, b, c)
[20fe0cd]139    volume = 4*env.pi*a*b*c/3
140    norm = CONTRAST**2*volume/10000
[31eea1f]141    return norm, Fq
142
[20fe0cd]143def make_cylinder(radius, length, env=NPenv):
144    radius, length = env.mpf(radius), env.mpf(length)
[31eea1f]145    def Fq(qa, qb, qc):
[20fe0cd]146        qab = env.sqrt(qa**2 + qb**2)
147        return env.sas_2J1x_x(qab*radius) * env.sas_sinx_x((qc*length)/2)
148    Fq.__doc__ = "cylinder radius=%g, length=%g"%(radius, length)
149    volume = env.pi*radius**2*length
150    norm = CONTRAST**2*volume/10000
[31eea1f]151    return norm, Fq
152
[20fe0cd]153def make_sphere(radius, env=NPenv):
154    radius = env.mpf(radius)
[31eea1f]155    def Fq(qa, qb, qc):
[20fe0cd]156        q = env.sqrt(qa**2 + qb**2 + qc**2)
157        return env.sas_3j1x_x(q*radius)
158    Fq.__doc__ = "sphere radius=%g"%(radius, )
159    volume = 4*pi*radius**3
160    norm = CONTRAST**2*volume/10000
[31eea1f]161    return norm, Fq
162
[20fe0cd]163def make_paracrystal(radius, dnn, d_factor, lattice='bcc', env=NPenv):
164    radius, dnn, d_factor = env.mpf(radius), env.mpf(dnn), env.mpf(d_factor)
165    def sc(qa, qb, qc):
166        return qa, qb, qc
167    def bcc(qa, qb, qc):
168        a1 = (+qa + qb + qc)/2
169        a2 = (-qa - qb + qc)/2
170        a3 = (-qa + qb - qc)/2
171        return a1, a2, a3
172    def fcc(qa, qb, qc):
[5110e16]173        a1 = ( 0 + qb + qc)/2
174        a2 = (-qa + 0 + qc)/2
175        a3 = (-qa + qb + 0)/2
[20fe0cd]176        return a1, a2, a3
177    lattice_fn = {'sc': sc, 'bcc': bcc, 'fcc': fcc}[lattice]
178    radius, dnn, d_factor = env.mpf(radius), env.mpf(dnn), env.mpf(d_factor)
[31eea1f]179    def Fq(qa, qb, qc):
[20fe0cd]180        a1, a2, a3 = lattice_fn(qa, qb, qc)
181        # Note: paper says that different directions can have different
182        # distoration factors.  Easy enough to add to the code.
183        arg = -(dnn*d_factor)**2*(a1**2 + a2**2 + a3**2)/2
184        exp_arg = env.exp(arg)
185        den = [((exp_arg - 2*env.cos(dnn*a))*exp_arg + 1) for a in (a1, a2, a3)]
186        Sq = -env.expm1(2*arg)**3/(den[0]*den[1]*den[2])
[31eea1f]187
[20fe0cd]188        q = env.sqrt(qa**2 + qb**2 + qc**2)
189        Fq = env.sas_3j1x_x(q*radius)
[5110e16]190        # the caller computes F(q)**2, but we need it to compute S(q)*F(q)**2
[20fe0cd]191        return env.sqrt(Sq)*Fq
192    Fq.__doc__ = "%s paracrystal a=%g da=%g r=%g"%(lattice, dnn, d_factor, radius)
193    def sphere_volume(r): return 4*env.pi*r**3/3
194    Vf = {
195        'sc': sphere_volume(radius/dnn),
196        'bcc': 2*sphere_volume(env.sqrt(3)/2*radius/dnn),
[5110e16]197        'fcc': 4*sphere_volume(1/env.sqrt(2)*radius/dnn),
[20fe0cd]198    }[lattice]
199    volume = sphere_volume(radius)
[5110e16]200    norm = CONTRAST**2*volume/10000*Vf
[31eea1f]201    return norm, Fq
[4f611f1]202
[20fe0cd]203if shape == 'sphere':
204    RADIUS = 50  # integer for the sake of mpf
205    NORM, KERNEL = make_sphere(radius=RADIUS)
206    NORM_MP, KERNEL_MP = make_sphere(radius=RADIUS, env=MPenv)
207elif shape == 'cylinder':
[31eea1f]208    #RADIUS, LENGTH = 10, 100000
209    RADIUS, LENGTH = 10, 300  # integer for the sake of mpf
210    NORM, KERNEL = make_cylinder(radius=RADIUS, length=LENGTH)
[20fe0cd]211    NORM_MP, KERNEL_MP = make_cylinder(radius=RADIUS, length=LENGTH, env=MPenv)
212elif shape == 'triaxial_ellipsoid':
[31eea1f]213    #A, B, C = 4450, 14000, 47
214    A, B, C = 445, 140, 47  # integer for the sake of mpf
[1820208]215    NORM, KERNEL = make_triaxial_ellipsoid(A, B, C)
216    NORM_MP, KERNEL_MP = make_triaxial_ellipsoid(A, B, C, env=MPenv)
[31eea1f]217elif shape == 'parallelepiped':
218    #A, B, C = 4450, 14000, 47
219    A, B, C = 445, 140, 47  # integer for the sake of mpf
220    NORM, KERNEL = make_parallelepiped(A, B, C)
[20fe0cd]221    NORM_MP, KERNEL_MP = make_parallelepiped(A, B, C, env=MPenv)
[49eb251]222elif shape == 'core_shell_parallelepiped':
223    #A, B, C = 4450, 14000, 47
224    #A, B, C = 445, 140, 47  # integer for the sake of mpf
[c462169]225    A, B, C = 114, 1380, 6800
226    DA, DB, DC = 21, 58, 2300
[49eb251]227    SLDA, SLDB, SLDC = "5", "-0.3", "11.5"
[c462169]228    ## default parameters from sasmodels
229    #A,B,C,DA,DB,DC,SLDA,SLDB,SLDC = 400,75,35,10,10,10,2,4,2
230    ## swap A-B-C to C-B-A
231    #A, B, C, DA, DB, DC, SLDA, SLDB, SLDC = C, B, A, DC, DB, DA, SLDC, SLDB, SLDA
[a1c32c2]232    #A,B,C,DA,DB,DC,SLDA,SLDB,SLDC = 10,20,30,100,200,300,1,2,3
233    #SLD_SOLVENT,CONTRAST = 0, 4
[49eb251]234    if 1: # C shortest
235        B, C = C, B
236        DB, DC = DC, DB
237        SLDB, SLDC = SLDC, SLDB
238    elif 0: # C longest
239        A, C = C, A
240        DA, DC = DC, DA
241        SLDA, SLDC = SLDC, SLDA
[c462169]242    #NORM, KERNEL = make_core_shell_parallelepiped(A, B, C, DA, DB, DC, SLDA, SLDB, SLDC)
[49eb251]243    NORM, KERNEL = make_core_shell_parallelepiped(A, B, C, DA, DB, DC, SLDA, SLDB, SLDC)
244    NORM_MP, KERNEL_MP = make_core_shell_parallelepiped(A, B, C, DA, DB, DC, SLDA, SLDB, SLDC, env=MPenv)
[20fe0cd]245elif shape == 'paracrystal':
246    LATTICE = 'bcc'
247    #LATTICE = 'fcc'
248    #LATTICE = 'sc'
249    DNN, D_FACTOR = 220, '0.06'  # mpmath needs to initialize floats from string
250    RADIUS = 40  # integer for the sake of mpf
251    NORM, KERNEL = make_paracrystal(
252        radius=RADIUS, dnn=DNN, d_factor=D_FACTOR, lattice=LATTICE)
253    NORM_MP, KERNEL_MP = make_paracrystal(
254        radius=RADIUS, dnn=DNN, d_factor=D_FACTOR, lattice=LATTICE, env=MPenv)
[31eea1f]255else:
256    raise ValueError("Unknown shape %r"%shape)
[4f611f1]257
[20fe0cd]258# Note: hardcoded in mp_quad
[4f611f1]259THETA_LOW, THETA_HIGH = 0, pi
260PHI_LOW, PHI_HIGH = 0, 2*pi
261SCALE = 1
262
[31eea1f]263# mathematica code for triaxial_ellipsoid (untested)
264_ = """
265R[theta_, phi_, a_, b_, c_] := Sqrt[(a Sin[theta]Cos[phi])^2 + (b Sin[theta]Sin[phi])^2 + (c Cos[theta])^2]
266Sphere[q_, r_] := 3 SphericalBesselJ[q r]/(q r)
267V[a_, b_, c_] := 4/3 pi a b c
268Norm[sld_, solvent_, a_, b_, c_] := V[a, b, c] (solvent - sld)^2
269F[q_, theta_, phi_, a_, b_, c_] := Sphere[q, R[theta, phi, a, b, c]]
270I[q_, sld_, solvent_, a_, b_, c_] := Norm[sld, solvent, a, b, c]/(4 pi) Integrate[F[q, theta, phi, a, b, c]^2 Sin[theta], {phi, 0, 2 pi}, {theta, 0, pi}]
271I[6/10^3, 63/10, 3, 445, 140, 47]
272"""
273
[20fe0cd]274# 2D integration functions
275def mp_quad_2d(q, shape):
[31eea1f]276    evals = [0]
277    def integrand(theta, phi):
278        evals[0] += 1
279        qab = q*mp.sin(theta)
280        qa = qab*mp.cos(phi)
281        qb = qab*mp.sin(phi)
282        qc = q*mp.cos(theta)
283        Zq = KERNEL_MP(qa, qb, qc)**2
284        return Zq*mp.sin(theta)
285    ans = mp.quad(integrand, (0, mp.pi), (0, 2*mp.pi))
286    Iq = NORM_MP*ans/(4*mp.pi)
287    return evals[0], Iq
[4f611f1]288
[20fe0cd]289def kernel_2d(q, theta, phi):
[4f611f1]290    """
291    S(q) kernel for paracrystal forms.
292    """
293    qab = q*sin(theta)
294    qa = qab*cos(phi)
295    qb = qab*sin(phi)
296    qc = q*cos(theta)
297    return NORM*KERNEL(qa, qb, qc)**2
298
[20fe0cd]299def scipy_dblquad_2d(q):
[4f611f1]300    """
301    Compute the integral using scipy dblquad.  This gets the correct answer
302    eventually, but it is slow.
303    """
304    evals = [0]
[31eea1f]305    def integrand(phi, theta):
[4f611f1]306        evals[0] += 1
[20fe0cd]307        Zq = kernel_2d(q, theta=theta, phi=phi)
[4f611f1]308        return Zq*sin(theta)
[31eea1f]309    ans = dblquad(integrand, THETA_LOW, THETA_HIGH, lambda x: PHI_LOW, lambda x: PHI_HIGH)[0]
310    return evals[0], ans*SCALE/(4*pi)
[4f611f1]311
312
313def scipy_romberg_2d(q):
314    """
315    Compute the integral using romberg integration.  This function does not
316    complete in a reasonable time.  No idea if it is accurate.
317    """
[31eea1f]318    evals = [0]
[4f611f1]319    def inner(phi, theta):
[31eea1f]320        evals[0] += 1
[20fe0cd]321        return kernel_2d(q, theta=theta, phi=phi)
[4f611f1]322    def outer(theta):
[31eea1f]323        Zq = romberg(inner, PHI_LOW, PHI_HIGH, divmax=100, args=(theta,))
324        return Zq*sin(theta)
325    ans = romberg(outer, THETA_LOW, THETA_HIGH, divmax=100)
326    return evals[0], ans*SCALE/(4*pi)
[4f611f1]327
328
[20fe0cd]329def semi_romberg_2d(q, n=100):
[4f611f1]330    """
331    Use 1D romberg integration in phi and regular simpsons rule in theta.
332    """
333    evals = [0]
334    def inner(phi, theta):
335        evals[0] += 1
[20fe0cd]336        return kernel_2d(q, theta=theta, phi=phi)
[4f611f1]337    theta = np.linspace(THETA_LOW, THETA_HIGH, n)
[31eea1f]338    Zq = [romberg(inner, PHI_LOW, PHI_HIGH, divmax=100, args=(t,)) for t in theta]
339    ans = simps(np.array(Zq)*sin(theta), dx=theta[1]-theta[0])
340    return evals[0], ans*SCALE/(4*pi)
[4f611f1]341
[20fe0cd]342def gauss_quad_2d(q, n=150):
[4f611f1]343    """
344    Compute the integral using gaussian quadrature for n = 20, 76 or 150.
345    """
[20fe0cd]346    z, w = leggauss(n)
[4f611f1]347    theta = (THETA_HIGH-THETA_LOW)*(z + 1)/2 + THETA_LOW
348    phi = (PHI_HIGH-PHI_LOW)*(z + 1)/2 + PHI_LOW
349    Atheta, Aphi = np.meshgrid(theta, phi)
350    Aw = w[None, :] * w[:, None]
[31eea1f]351    sin_theta = abs(sin(Atheta))
[20fe0cd]352    Zq = kernel_2d(q=q, theta=Atheta, phi=Aphi)
[31eea1f]353    # change from [-1,1] x [-1,1] range to [0, pi] x [0, 2 pi] range
354    dxdy_stretch = (THETA_HIGH-THETA_LOW)/2 * (PHI_HIGH-PHI_LOW)/2
355    Iq = np.sum(Zq*Aw*sin_theta)*SCALE/(4*pi) * dxdy_stretch
356    return n**2, Iq
[4f611f1]357
[c462169]358def gauss_quad_usub(q, n=150, dtype=DTYPE):
359    """
360    Compute the integral using gaussian quadrature for n = 20, 76 or 150.
361
362    Use *u = sin theta* substitution, and restrict integration over a single
363    quadrant for shapes that are mirror symmetric about AB, AC and BC planes.
364
365    Note that this doesn't work for fcc/bcc paracrystals, which instead step
366    over the entire 4 pi surface uniformly in theta-phi.
367    """
368    z, w = leggauss(n)
369    cos_theta = 0.5 * (z + 1)
370    theta = arccos(cos_theta)
371    phi = pi/2*(0.5 * (z + 1))
372    Atheta, Aphi = np.meshgrid(theta, phi)
373    Aw = w[None, :] * w[:, None]
374    q, Atheta, Aphi, Aw = [np.asarray(v, dtype=dtype) for v in (q, Atheta, Aphi, Aw)]
375    Zq = kernel_2d(q=q, theta=Atheta, phi=Aphi)
376    Iq = np.sum(Zq*Aw)*0.25
377    return n**2, Iq
378
[20fe0cd]379def gridded_2d(q, n=300):
[4f611f1]380    """
381    Compute the integral on a regular grid using rectangular, trapezoidal,
382    simpsons, and romberg integration.  Romberg integration requires that
383    the grid be of size n = 2**k + 1.
384    """
385    theta = np.linspace(THETA_LOW, THETA_HIGH, n)
386    phi = np.linspace(PHI_LOW, PHI_HIGH, n)
387    Atheta, Aphi = np.meshgrid(theta, phi)
[20fe0cd]388    Zq = kernel_2d(q=q, theta=Atheta, phi=Aphi)
[4f611f1]389    Zq *= abs(sin(Atheta))
390    dx, dy = theta[1]-theta[0], phi[1]-phi[0]
[31eea1f]391    print("rect-%d"%n, n**2, np.sum(Zq)*dx*dy*SCALE/(4*pi))
392    print("trapz-%d"%n, n**2, np.trapz(np.trapz(Zq, dx=dx), dx=dy)*SCALE/(4*pi))
393    print("simpson-%d"%n, n**2, simps(simps(Zq, dx=dx), dx=dy)*SCALE/(4*pi))
394    print("romb-%d"%n, n**2, romb(romb(Zq, dx=dx), dx=dy)*SCALE/(4*pi))
[4f611f1]395
[20fe0cd]396def plot_2d(q, n=300):
[4f611f1]397    """
398    Plot the 2D surface that needs to be integrated in order to compute
399    the BCC S(q) at a particular q, dnn and d_factor.  *n* is the number
400    of points in the grid.
401    """
402    theta = np.linspace(THETA_LOW, THETA_HIGH, n)
403    phi = np.linspace(PHI_LOW, PHI_HIGH, n)
404    Atheta, Aphi = np.meshgrid(theta, phi)
[20fe0cd]405    Zq = kernel_2d(q=q, theta=Atheta, phi=Aphi)
[4f611f1]406    #Zq *= abs(sin(Atheta))
407    pylab.pcolor(degrees(theta), degrees(phi), log10(np.fmax(Zq, 1.e-6)))
408    pylab.axis('tight')
[20fe0cd]409    pylab.title("%s I(q,t) sin(t) for q=%g" % (KERNEL.__doc__, q))
[4f611f1]410    pylab.xlabel("theta (degrees)")
411    pylab.ylabel("phi (degrees)")
412    cbar = pylab.colorbar()
413    cbar.set_label('log10 S(q)')
414    pylab.show()
415
[20fe0cd]416def main(Qstr):
[31eea1f]417    Q = float(Qstr)
418    if shape == 'sphere':
[1820208]419        print("exact", NORM*sp.sas_3j1x_x(Q*RADIUS)**2)
[20fe0cd]420    print("gauss-20", *gauss_quad_2d(Q, n=20))
421    print("gauss-76", *gauss_quad_2d(Q, n=76))
422    print("gauss-150", *gauss_quad_2d(Q, n=150))
423    print("gauss-500", *gauss_quad_2d(Q, n=500))
[49eb251]424    print("gauss-1025", *gauss_quad_2d(Q, n=1025))
425    print("gauss-2049", *gauss_quad_2d(Q, n=2049))
[c462169]426    print("gauss-20 usub", *gauss_quad_usub(Q, n=20))
427    print("gauss-76 usub", *gauss_quad_usub(Q, n=76))
428    print("gauss-150 usub", *gauss_quad_usub(Q, n=150))
[20fe0cd]429    #gridded_2d(Q, n=2**8+1)
430    gridded_2d(Q, n=2**10+1)
[49eb251]431    #gridded_2d(Q, n=2**12+1)
[20fe0cd]432    #gridded_2d(Q, n=2**15+1)
[49eb251]433    if shape not in ('paracrystal', 'core_shell_parallelepiped'):
434        # adaptive forms on models for which the calculations are fast enough
[20fe0cd]435        print("dblquad", *scipy_dblquad_2d(Q))
436        print("semi-romberg-100", *semi_romberg_2d(Q, n=100))
437        print("romberg", *scipy_romberg_2d(Q))
438        with mp.workprec(100):
439            print("mpmath", *mp_quad_2d(mp.mpf(Qstr), shape))
440    plot_2d(Q, n=200)
441
442if __name__ == "__main__":
443    main(Qstr)
Note: See TracBrowser for help on using the repository browser.