[20fe0cd] | 1 | #!/usr/bin/env python |
---|
[4f611f1] | 2 | """ |
---|
| 3 | Asymmetric shape integration |
---|
[5110e16] | 4 | |
---|
| 5 | Usage: |
---|
| 6 | |
---|
| 7 | explore/asymint.py [MODEL] [q-value] |
---|
| 8 | |
---|
| 9 | Computes the numerical integral over theta and phi of the given model at a |
---|
| 10 | single point q using different algorithms or the same algorithm with different |
---|
| 11 | precision. It also displays a 2-D image of the theta-phi surface that is |
---|
| 12 | being integrated. |
---|
| 13 | |
---|
| 14 | The available models are: |
---|
| 15 | |
---|
| 16 | triaxial_ellipsoid, parallelpiped, paracrystal, cylinder, sphere |
---|
| 17 | |
---|
| 18 | Cylinder and sphere are included as simple checks on the integration |
---|
| 19 | algorithms. Cylinder is better investigated using 1-D integration methods in |
---|
| 20 | explore/symint.py. Sphere has an easily computed analytic value which is |
---|
| 21 | identical for all theta-phi for a given q, so it is useful for checking |
---|
| 22 | that the normalization constants are correct for the different algorithms. |
---|
[4f611f1] | 23 | """ |
---|
| 24 | |
---|
| 25 | from __future__ import print_function, division |
---|
| 26 | |
---|
| 27 | import os, sys |
---|
[20fe0cd] | 28 | sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) |
---|
[4f611f1] | 29 | |
---|
| 30 | import numpy as np |
---|
[31eea1f] | 31 | import mpmath as mp |
---|
[4f611f1] | 32 | from numpy import pi, sin, cos, sqrt, exp, expm1, degrees, log10 |
---|
[31eea1f] | 33 | from numpy.polynomial.legendre import leggauss |
---|
[4f611f1] | 34 | from scipy.integrate import dblquad, simps, romb, romberg |
---|
| 35 | import pylab |
---|
| 36 | |
---|
[20fe0cd] | 37 | import sasmodels.special as sp |
---|
[4f611f1] | 38 | |
---|
[20fe0cd] | 39 | # Need to parse shape early since it determines the kernel function |
---|
| 40 | # that will be used for the various integrators |
---|
| 41 | shape = 'parallelepiped' if len(sys.argv) < 2 else sys.argv[1] |
---|
| 42 | Qstr = '0.005' if len(sys.argv) < 3 else sys.argv[2] |
---|
| 43 | |
---|
| 44 | class MPenv: |
---|
[6e604f8] | 45 | sqrt = staticmethod(mp.sqrt) |
---|
| 46 | exp = staticmethod(mp.exp) |
---|
| 47 | expm1 = staticmethod(mp.expm1) |
---|
| 48 | cos = staticmethod(mp.cos) |
---|
| 49 | sin = staticmethod(mp.sin) |
---|
| 50 | tan = staticmethod(mp.tan) |
---|
| 51 | @staticmethod |
---|
[20fe0cd] | 52 | def sas_3j1x_x(x): |
---|
| 53 | return 3*(mp.sin(x)/x - mp.cos(x))/(x*x) |
---|
[6e604f8] | 54 | @staticmethod |
---|
[20fe0cd] | 55 | def sas_2J1x_x(x): |
---|
| 56 | return 2*mp.j1(x)/x |
---|
[6e604f8] | 57 | @staticmethod |
---|
[20fe0cd] | 58 | def sas_sinx_x(x): |
---|
| 59 | return mp.sin(x)/x |
---|
| 60 | pi = mp.pi |
---|
[6e604f8] | 61 | mpf = staticmethod(mp.mpf) |
---|
[20fe0cd] | 62 | |
---|
| 63 | class NPenv: |
---|
[6e604f8] | 64 | sqrt = staticmethod(np.sqrt) |
---|
| 65 | exp = staticmethod(np.exp) |
---|
| 66 | expm1 = staticmethod(np.expm1) |
---|
| 67 | cos = staticmethod(np.cos) |
---|
| 68 | sin = staticmethod(np.sin) |
---|
| 69 | tan = staticmethod(np.tan) |
---|
| 70 | sas_3j1x_x = staticmethod(sp.sas_3j1x_x) |
---|
| 71 | sas_2J1x_x = staticmethod(sp.sas_2J1x_x) |
---|
| 72 | sas_sinx_x = staticmethod(sp.sas_sinx_x) |
---|
[20fe0cd] | 73 | pi = np.pi |
---|
[6e604f8] | 74 | mpf = staticmethod(float) |
---|
[31eea1f] | 75 | |
---|
| 76 | SLD = 3 |
---|
| 77 | SLD_SOLVENT = 6 |
---|
[4f611f1] | 78 | CONTRAST = SLD - SLD_SOLVENT |
---|
| 79 | |
---|
[20fe0cd] | 80 | # Carefully code models so that mpmath will use full precision. That means: |
---|
| 81 | # * wrap inputs in env.mpf |
---|
| 82 | # * don't use floating point constants, only integers |
---|
| 83 | # * for division, make sure the numerator or denominator is env.mpf |
---|
| 84 | # * use env.pi, env.sas_sinx_x, etc. for functions |
---|
| 85 | def make_parallelepiped(a, b, c, env=NPenv): |
---|
| 86 | a, b, c = env.mpf(a), env.mpf(b), env.mpf(c) |
---|
[31eea1f] | 87 | def Fq(qa, qb, qc): |
---|
[20fe0cd] | 88 | siA = env.sas_sinx_x(0.5*a*qa/2) |
---|
| 89 | siB = env.sas_sinx_x(0.5*b*qb/2) |
---|
| 90 | siC = env.sas_sinx_x(0.5*c*qc/2) |
---|
[31eea1f] | 91 | return siA * siB * siC |
---|
[20fe0cd] | 92 | Fq.__doc__ = "parallelepiped a=%g, b=%g c=%g"%(a, b, c) |
---|
[31eea1f] | 93 | volume = a*b*c |
---|
[20fe0cd] | 94 | norm = CONTRAST**2*volume/10000 |
---|
[31eea1f] | 95 | return norm, Fq |
---|
| 96 | |
---|
[20fe0cd] | 97 | def make_triaxial_ellipsoid(a, b, c, env=NPenv): |
---|
| 98 | a, b, c = env.mpf(a), env.mpf(b), env.mpf(c) |
---|
[31eea1f] | 99 | def Fq(qa, qb, qc): |
---|
[20fe0cd] | 100 | qr = env.sqrt((a*qa)**2 + (b*qb)**2 + (c*qc)**2) |
---|
| 101 | return env.sas_3j1x_x(qr) |
---|
[1820208] | 102 | Fq.__doc__ = "triaxial ellipsoid minor=%g, major=%g polar=%g"%(a, b, c) |
---|
[20fe0cd] | 103 | volume = 4*env.pi*a*b*c/3 |
---|
| 104 | norm = CONTRAST**2*volume/10000 |
---|
[31eea1f] | 105 | return norm, Fq |
---|
| 106 | |
---|
[20fe0cd] | 107 | def make_cylinder(radius, length, env=NPenv): |
---|
| 108 | radius, length = env.mpf(radius), env.mpf(length) |
---|
[31eea1f] | 109 | def Fq(qa, qb, qc): |
---|
[20fe0cd] | 110 | qab = env.sqrt(qa**2 + qb**2) |
---|
| 111 | return env.sas_2J1x_x(qab*radius) * env.sas_sinx_x((qc*length)/2) |
---|
| 112 | Fq.__doc__ = "cylinder radius=%g, length=%g"%(radius, length) |
---|
| 113 | volume = env.pi*radius**2*length |
---|
| 114 | norm = CONTRAST**2*volume/10000 |
---|
[31eea1f] | 115 | return norm, Fq |
---|
| 116 | |
---|
[20fe0cd] | 117 | def make_sphere(radius, env=NPenv): |
---|
| 118 | radius = env.mpf(radius) |
---|
[31eea1f] | 119 | def Fq(qa, qb, qc): |
---|
[20fe0cd] | 120 | q = env.sqrt(qa**2 + qb**2 + qc**2) |
---|
| 121 | return env.sas_3j1x_x(q*radius) |
---|
| 122 | Fq.__doc__ = "sphere radius=%g"%(radius, ) |
---|
| 123 | volume = 4*pi*radius**3 |
---|
| 124 | norm = CONTRAST**2*volume/10000 |
---|
[31eea1f] | 125 | return norm, Fq |
---|
| 126 | |
---|
[20fe0cd] | 127 | def make_paracrystal(radius, dnn, d_factor, lattice='bcc', env=NPenv): |
---|
| 128 | radius, dnn, d_factor = env.mpf(radius), env.mpf(dnn), env.mpf(d_factor) |
---|
| 129 | def sc(qa, qb, qc): |
---|
| 130 | return qa, qb, qc |
---|
| 131 | def bcc(qa, qb, qc): |
---|
| 132 | a1 = (+qa + qb + qc)/2 |
---|
| 133 | a2 = (-qa - qb + qc)/2 |
---|
| 134 | a3 = (-qa + qb - qc)/2 |
---|
| 135 | return a1, a2, a3 |
---|
| 136 | def fcc(qa, qb, qc): |
---|
[5110e16] | 137 | a1 = ( 0 + qb + qc)/2 |
---|
| 138 | a2 = (-qa + 0 + qc)/2 |
---|
| 139 | a3 = (-qa + qb + 0)/2 |
---|
[20fe0cd] | 140 | return a1, a2, a3 |
---|
| 141 | lattice_fn = {'sc': sc, 'bcc': bcc, 'fcc': fcc}[lattice] |
---|
| 142 | radius, dnn, d_factor = env.mpf(radius), env.mpf(dnn), env.mpf(d_factor) |
---|
[31eea1f] | 143 | def Fq(qa, qb, qc): |
---|
[20fe0cd] | 144 | a1, a2, a3 = lattice_fn(qa, qb, qc) |
---|
| 145 | # Note: paper says that different directions can have different |
---|
| 146 | # distoration factors. Easy enough to add to the code. |
---|
| 147 | arg = -(dnn*d_factor)**2*(a1**2 + a2**2 + a3**2)/2 |
---|
| 148 | exp_arg = env.exp(arg) |
---|
| 149 | den = [((exp_arg - 2*env.cos(dnn*a))*exp_arg + 1) for a in (a1, a2, a3)] |
---|
| 150 | Sq = -env.expm1(2*arg)**3/(den[0]*den[1]*den[2]) |
---|
[31eea1f] | 151 | |
---|
[20fe0cd] | 152 | q = env.sqrt(qa**2 + qb**2 + qc**2) |
---|
| 153 | Fq = env.sas_3j1x_x(q*radius) |
---|
[5110e16] | 154 | # the caller computes F(q)**2, but we need it to compute S(q)*F(q)**2 |
---|
[20fe0cd] | 155 | return env.sqrt(Sq)*Fq |
---|
| 156 | Fq.__doc__ = "%s paracrystal a=%g da=%g r=%g"%(lattice, dnn, d_factor, radius) |
---|
| 157 | def sphere_volume(r): return 4*env.pi*r**3/3 |
---|
| 158 | Vf = { |
---|
| 159 | 'sc': sphere_volume(radius/dnn), |
---|
| 160 | 'bcc': 2*sphere_volume(env.sqrt(3)/2*radius/dnn), |
---|
[5110e16] | 161 | 'fcc': 4*sphere_volume(1/env.sqrt(2)*radius/dnn), |
---|
[20fe0cd] | 162 | }[lattice] |
---|
| 163 | volume = sphere_volume(radius) |
---|
[5110e16] | 164 | norm = CONTRAST**2*volume/10000*Vf |
---|
[31eea1f] | 165 | return norm, Fq |
---|
[4f611f1] | 166 | |
---|
[20fe0cd] | 167 | if shape == 'sphere': |
---|
| 168 | RADIUS = 50 # integer for the sake of mpf |
---|
| 169 | NORM, KERNEL = make_sphere(radius=RADIUS) |
---|
| 170 | NORM_MP, KERNEL_MP = make_sphere(radius=RADIUS, env=MPenv) |
---|
| 171 | elif shape == 'cylinder': |
---|
[31eea1f] | 172 | #RADIUS, LENGTH = 10, 100000 |
---|
| 173 | RADIUS, LENGTH = 10, 300 # integer for the sake of mpf |
---|
| 174 | NORM, KERNEL = make_cylinder(radius=RADIUS, length=LENGTH) |
---|
[20fe0cd] | 175 | NORM_MP, KERNEL_MP = make_cylinder(radius=RADIUS, length=LENGTH, env=MPenv) |
---|
| 176 | elif shape == 'triaxial_ellipsoid': |
---|
[31eea1f] | 177 | #A, B, C = 4450, 14000, 47 |
---|
| 178 | A, B, C = 445, 140, 47 # integer for the sake of mpf |
---|
[1820208] | 179 | NORM, KERNEL = make_triaxial_ellipsoid(A, B, C) |
---|
| 180 | NORM_MP, KERNEL_MP = make_triaxial_ellipsoid(A, B, C, env=MPenv) |
---|
[31eea1f] | 181 | elif shape == 'parallelepiped': |
---|
| 182 | #A, B, C = 4450, 14000, 47 |
---|
| 183 | A, B, C = 445, 140, 47 # integer for the sake of mpf |
---|
| 184 | NORM, KERNEL = make_parallelepiped(A, B, C) |
---|
[20fe0cd] | 185 | NORM_MP, KERNEL_MP = make_parallelepiped(A, B, C, env=MPenv) |
---|
| 186 | elif shape == 'paracrystal': |
---|
| 187 | LATTICE = 'bcc' |
---|
| 188 | #LATTICE = 'fcc' |
---|
| 189 | #LATTICE = 'sc' |
---|
| 190 | DNN, D_FACTOR = 220, '0.06' # mpmath needs to initialize floats from string |
---|
| 191 | RADIUS = 40 # integer for the sake of mpf |
---|
| 192 | NORM, KERNEL = make_paracrystal( |
---|
| 193 | radius=RADIUS, dnn=DNN, d_factor=D_FACTOR, lattice=LATTICE) |
---|
| 194 | NORM_MP, KERNEL_MP = make_paracrystal( |
---|
| 195 | radius=RADIUS, dnn=DNN, d_factor=D_FACTOR, lattice=LATTICE, env=MPenv) |
---|
[31eea1f] | 196 | else: |
---|
| 197 | raise ValueError("Unknown shape %r"%shape) |
---|
[4f611f1] | 198 | |
---|
[20fe0cd] | 199 | # Note: hardcoded in mp_quad |
---|
[4f611f1] | 200 | THETA_LOW, THETA_HIGH = 0, pi |
---|
| 201 | PHI_LOW, PHI_HIGH = 0, 2*pi |
---|
| 202 | SCALE = 1 |
---|
| 203 | |
---|
[31eea1f] | 204 | # mathematica code for triaxial_ellipsoid (untested) |
---|
| 205 | _ = """ |
---|
| 206 | R[theta_, phi_, a_, b_, c_] := Sqrt[(a Sin[theta]Cos[phi])^2 + (b Sin[theta]Sin[phi])^2 + (c Cos[theta])^2] |
---|
| 207 | Sphere[q_, r_] := 3 SphericalBesselJ[q r]/(q r) |
---|
| 208 | V[a_, b_, c_] := 4/3 pi a b c |
---|
| 209 | Norm[sld_, solvent_, a_, b_, c_] := V[a, b, c] (solvent - sld)^2 |
---|
| 210 | F[q_, theta_, phi_, a_, b_, c_] := Sphere[q, R[theta, phi, a, b, c]] |
---|
| 211 | I[q_, sld_, solvent_, a_, b_, c_] := Norm[sld, solvent, a, b, c]/(4 pi) Integrate[F[q, theta, phi, a, b, c]^2 Sin[theta], {phi, 0, 2 pi}, {theta, 0, pi}] |
---|
| 212 | I[6/10^3, 63/10, 3, 445, 140, 47] |
---|
| 213 | """ |
---|
| 214 | |
---|
[20fe0cd] | 215 | # 2D integration functions |
---|
| 216 | def mp_quad_2d(q, shape): |
---|
[31eea1f] | 217 | evals = [0] |
---|
| 218 | def integrand(theta, phi): |
---|
| 219 | evals[0] += 1 |
---|
| 220 | qab = q*mp.sin(theta) |
---|
| 221 | qa = qab*mp.cos(phi) |
---|
| 222 | qb = qab*mp.sin(phi) |
---|
| 223 | qc = q*mp.cos(theta) |
---|
| 224 | Zq = KERNEL_MP(qa, qb, qc)**2 |
---|
| 225 | return Zq*mp.sin(theta) |
---|
| 226 | ans = mp.quad(integrand, (0, mp.pi), (0, 2*mp.pi)) |
---|
| 227 | Iq = NORM_MP*ans/(4*mp.pi) |
---|
| 228 | return evals[0], Iq |
---|
[4f611f1] | 229 | |
---|
[20fe0cd] | 230 | def kernel_2d(q, theta, phi): |
---|
[4f611f1] | 231 | """ |
---|
| 232 | S(q) kernel for paracrystal forms. |
---|
| 233 | """ |
---|
| 234 | qab = q*sin(theta) |
---|
| 235 | qa = qab*cos(phi) |
---|
| 236 | qb = qab*sin(phi) |
---|
| 237 | qc = q*cos(theta) |
---|
| 238 | return NORM*KERNEL(qa, qb, qc)**2 |
---|
| 239 | |
---|
[20fe0cd] | 240 | def scipy_dblquad_2d(q): |
---|
[4f611f1] | 241 | """ |
---|
| 242 | Compute the integral using scipy dblquad. This gets the correct answer |
---|
| 243 | eventually, but it is slow. |
---|
| 244 | """ |
---|
| 245 | evals = [0] |
---|
[31eea1f] | 246 | def integrand(phi, theta): |
---|
[4f611f1] | 247 | evals[0] += 1 |
---|
[20fe0cd] | 248 | Zq = kernel_2d(q, theta=theta, phi=phi) |
---|
[4f611f1] | 249 | return Zq*sin(theta) |
---|
[31eea1f] | 250 | ans = dblquad(integrand, THETA_LOW, THETA_HIGH, lambda x: PHI_LOW, lambda x: PHI_HIGH)[0] |
---|
| 251 | return evals[0], ans*SCALE/(4*pi) |
---|
[4f611f1] | 252 | |
---|
| 253 | |
---|
| 254 | def scipy_romberg_2d(q): |
---|
| 255 | """ |
---|
| 256 | Compute the integral using romberg integration. This function does not |
---|
| 257 | complete in a reasonable time. No idea if it is accurate. |
---|
| 258 | """ |
---|
[31eea1f] | 259 | evals = [0] |
---|
[4f611f1] | 260 | def inner(phi, theta): |
---|
[31eea1f] | 261 | evals[0] += 1 |
---|
[20fe0cd] | 262 | return kernel_2d(q, theta=theta, phi=phi) |
---|
[4f611f1] | 263 | def outer(theta): |
---|
[31eea1f] | 264 | Zq = romberg(inner, PHI_LOW, PHI_HIGH, divmax=100, args=(theta,)) |
---|
| 265 | return Zq*sin(theta) |
---|
| 266 | ans = romberg(outer, THETA_LOW, THETA_HIGH, divmax=100) |
---|
| 267 | return evals[0], ans*SCALE/(4*pi) |
---|
[4f611f1] | 268 | |
---|
| 269 | |
---|
[20fe0cd] | 270 | def semi_romberg_2d(q, n=100): |
---|
[4f611f1] | 271 | """ |
---|
| 272 | Use 1D romberg integration in phi and regular simpsons rule in theta. |
---|
| 273 | """ |
---|
| 274 | evals = [0] |
---|
| 275 | def inner(phi, theta): |
---|
| 276 | evals[0] += 1 |
---|
[20fe0cd] | 277 | return kernel_2d(q, theta=theta, phi=phi) |
---|
[4f611f1] | 278 | theta = np.linspace(THETA_LOW, THETA_HIGH, n) |
---|
[31eea1f] | 279 | Zq = [romberg(inner, PHI_LOW, PHI_HIGH, divmax=100, args=(t,)) for t in theta] |
---|
| 280 | ans = simps(np.array(Zq)*sin(theta), dx=theta[1]-theta[0]) |
---|
| 281 | return evals[0], ans*SCALE/(4*pi) |
---|
[4f611f1] | 282 | |
---|
[20fe0cd] | 283 | def gauss_quad_2d(q, n=150): |
---|
[4f611f1] | 284 | """ |
---|
| 285 | Compute the integral using gaussian quadrature for n = 20, 76 or 150. |
---|
| 286 | """ |
---|
[20fe0cd] | 287 | z, w = leggauss(n) |
---|
[4f611f1] | 288 | theta = (THETA_HIGH-THETA_LOW)*(z + 1)/2 + THETA_LOW |
---|
| 289 | phi = (PHI_HIGH-PHI_LOW)*(z + 1)/2 + PHI_LOW |
---|
| 290 | Atheta, Aphi = np.meshgrid(theta, phi) |
---|
| 291 | Aw = w[None, :] * w[:, None] |
---|
[31eea1f] | 292 | sin_theta = abs(sin(Atheta)) |
---|
[20fe0cd] | 293 | Zq = kernel_2d(q=q, theta=Atheta, phi=Aphi) |
---|
[31eea1f] | 294 | # change from [-1,1] x [-1,1] range to [0, pi] x [0, 2 pi] range |
---|
| 295 | dxdy_stretch = (THETA_HIGH-THETA_LOW)/2 * (PHI_HIGH-PHI_LOW)/2 |
---|
| 296 | Iq = np.sum(Zq*Aw*sin_theta)*SCALE/(4*pi) * dxdy_stretch |
---|
| 297 | return n**2, Iq |
---|
[4f611f1] | 298 | |
---|
[20fe0cd] | 299 | def gridded_2d(q, n=300): |
---|
[4f611f1] | 300 | """ |
---|
| 301 | Compute the integral on a regular grid using rectangular, trapezoidal, |
---|
| 302 | simpsons, and romberg integration. Romberg integration requires that |
---|
| 303 | the grid be of size n = 2**k + 1. |
---|
| 304 | """ |
---|
| 305 | theta = np.linspace(THETA_LOW, THETA_HIGH, n) |
---|
| 306 | phi = np.linspace(PHI_LOW, PHI_HIGH, n) |
---|
| 307 | Atheta, Aphi = np.meshgrid(theta, phi) |
---|
[20fe0cd] | 308 | Zq = kernel_2d(q=q, theta=Atheta, phi=Aphi) |
---|
[4f611f1] | 309 | Zq *= abs(sin(Atheta)) |
---|
| 310 | dx, dy = theta[1]-theta[0], phi[1]-phi[0] |
---|
[31eea1f] | 311 | print("rect-%d"%n, n**2, np.sum(Zq)*dx*dy*SCALE/(4*pi)) |
---|
| 312 | print("trapz-%d"%n, n**2, np.trapz(np.trapz(Zq, dx=dx), dx=dy)*SCALE/(4*pi)) |
---|
| 313 | print("simpson-%d"%n, n**2, simps(simps(Zq, dx=dx), dx=dy)*SCALE/(4*pi)) |
---|
| 314 | print("romb-%d"%n, n**2, romb(romb(Zq, dx=dx), dx=dy)*SCALE/(4*pi)) |
---|
[4f611f1] | 315 | |
---|
[20fe0cd] | 316 | def plot_2d(q, n=300): |
---|
[4f611f1] | 317 | """ |
---|
| 318 | Plot the 2D surface that needs to be integrated in order to compute |
---|
| 319 | the BCC S(q) at a particular q, dnn and d_factor. *n* is the number |
---|
| 320 | of points in the grid. |
---|
| 321 | """ |
---|
| 322 | theta = np.linspace(THETA_LOW, THETA_HIGH, n) |
---|
| 323 | phi = np.linspace(PHI_LOW, PHI_HIGH, n) |
---|
| 324 | Atheta, Aphi = np.meshgrid(theta, phi) |
---|
[20fe0cd] | 325 | Zq = kernel_2d(q=q, theta=Atheta, phi=Aphi) |
---|
[4f611f1] | 326 | #Zq *= abs(sin(Atheta)) |
---|
| 327 | pylab.pcolor(degrees(theta), degrees(phi), log10(np.fmax(Zq, 1.e-6))) |
---|
| 328 | pylab.axis('tight') |
---|
[20fe0cd] | 329 | pylab.title("%s I(q,t) sin(t) for q=%g" % (KERNEL.__doc__, q)) |
---|
[4f611f1] | 330 | pylab.xlabel("theta (degrees)") |
---|
| 331 | pylab.ylabel("phi (degrees)") |
---|
| 332 | cbar = pylab.colorbar() |
---|
| 333 | cbar.set_label('log10 S(q)') |
---|
| 334 | pylab.show() |
---|
| 335 | |
---|
[20fe0cd] | 336 | def main(Qstr): |
---|
[31eea1f] | 337 | Q = float(Qstr) |
---|
| 338 | if shape == 'sphere': |
---|
[1820208] | 339 | print("exact", NORM*sp.sas_3j1x_x(Q*RADIUS)**2) |
---|
[20fe0cd] | 340 | print("gauss-20", *gauss_quad_2d(Q, n=20)) |
---|
| 341 | print("gauss-76", *gauss_quad_2d(Q, n=76)) |
---|
| 342 | print("gauss-150", *gauss_quad_2d(Q, n=150)) |
---|
| 343 | print("gauss-500", *gauss_quad_2d(Q, n=500)) |
---|
| 344 | #gridded_2d(Q, n=2**8+1) |
---|
| 345 | gridded_2d(Q, n=2**10+1) |
---|
| 346 | #gridded_2d(Q, n=2**13+1) |
---|
| 347 | #gridded_2d(Q, n=2**15+1) |
---|
| 348 | if shape != 'paracrystal': # adaptive forms are too slow! |
---|
| 349 | print("dblquad", *scipy_dblquad_2d(Q)) |
---|
| 350 | print("semi-romberg-100", *semi_romberg_2d(Q, n=100)) |
---|
| 351 | print("romberg", *scipy_romberg_2d(Q)) |
---|
| 352 | with mp.workprec(100): |
---|
| 353 | print("mpmath", *mp_quad_2d(mp.mpf(Qstr), shape)) |
---|
| 354 | plot_2d(Q, n=200) |
---|
| 355 | |
---|
| 356 | if __name__ == "__main__": |
---|
| 357 | main(Qstr) |
---|