source: sasmodels/explore/angles.py @ 2bccb5a

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 2bccb5a was ef8e68c, checked in by Paul Kienzle <pkienzle@…>, 7 years ago

use definition of rotation matrices from wikipedia for jitter+view equations

  • Property mode set to 100644
File size: 7.6 KB
Line 
1#!/usr/bin/env python
2"""
3Generate code for orientation transforms using symbolic algebra.
4
5To make it easier to generate correct transforms for oriented shapes, we
6use the sympy symbolic alegbra package to do the matrix multiplication.
7The transforms are displayed both using an ascii math notation, and as
8C or python code which can be pasted directly into the kernel driver.
9
10If ever we decide to change conventions, we simply need to adjust the
11order and parameters to the rotation matrices.  For display we want to
12use forward transforms for the mesh describing the shape, first applying
13jitter, then adjusting the view.  For calculation we know the effective q
14so we instead need to first unwind the view, using the inverse rotation,
15then undo the jitter to get the q to calculate for the shape in its
16canonical orientation.
17
18Set *OUTPUT* to the type of code you want to see: ccode, python, math
19or any combination.
20"""
21
22from __future__ import print_function
23
24import codecs
25import sys
26import re
27
28import sympy as sp
29from sympy import pi, sqrt, sin, cos, Matrix, Eq
30
31# Select output
32OUTPUT = ""
33OUTPUT = OUTPUT + "ccode"
34#OUTPUT = OUTPUT + "python "
35OUTPUT = OUTPUT + "math "
36REUSE_SINCOS = True
37QC_ONLY = True # show only what is needed for dqc in the symmetric case
38
39# include unicode symbols in output, even if piping to a pager
40sys.stdout = codecs.getwriter('utf8')(sys.stdout)
41sp.init_printing(use_unicode=True)
42
43def subs(s):
44    """
45    Transform sympy generated code to follow sasmodels naming conventions.
46    """
47    if REUSE_SINCOS:
48        s = re.sub(r'(phi|psi|theta)\^\+', r'\1', s)  # jitter rep:  V^+ => V
49    s = re.sub(r'([a-z]*)\^\+', r'd\1', s)  # jitter rep:  V^+ => dV
50    s = re.sub(r'(cos|sin)\(([a-z]*)\)', r'\1_\2', s)  # cos(V) => cos_V
51    s = re.sub(r'pow\(([a-z]*), 2\)', r'\1*\1', s)  # pow(V, 2) => V*V
52    return s
53
54def comment(s):
55    r"""
56    Add a comment to the generated code.  Use '\n' to separate lines.
57    """
58    if 'ccode' in OUTPUT:
59        for line in s.split("\n"):
60            print("// " + line if line else "")
61    if 'python' in OUTPUT:
62        for line in s.split("\n"):
63            print("    ## " + line if line else "")
64
65def vprint(var, vec, comment=None, post=None):
66    """
67    Generate assignment statements.
68
69    *var* could be a single sympy symbol or a 1xN vector of symbols.
70
71    *vec* could be a single sympy expression or a 1xN vector of expressions
72    such as results from a matrix-vector multiplication.
73
74    *comment* if present is added to the start of the block as documentation.
75    """
76    #for v, row in zip(var, vec): sp.pprint(Eq(v, row))
77    desc = sp.pretty(Eq(var, vec), wrap_line=False)
78    if not isinstance(var, Matrix):
79        var, vec = [var], [vec]
80    if 'ccode' in OUTPUT:
81        if 'math' in OUTPUT:
82            print("\n// " + comment if comment else "")
83            print("/*")
84            for line in desc.split("\n"):
85                print(" * "+line)
86            print(" *\n */")
87        else:
88            print("\n    // " + comment if comment else "")
89        if post:
90            print("    // " + post)
91        for v, row in zip(var, vec):
92            print(subs("    const double " + sp.ccode(row, assign_to=v)))
93    if 'python' in OUTPUT:
94        if comment:
95            print("\n    ## " + comment)
96        if 'math' in OUTPUT:
97            for line in desc.split("\n"):
98                print("    # " + line)
99        if post:
100            print("    ## " + post)
101        for v, row in zip(var, vec):
102            print(subs("    " + sp.ccode(row, assign_to=v)[:-1]))
103
104    if OUTPUT == 'math ':
105        print("\n// " + comment if comment else "")
106        if post: print("// " + post)
107        print(desc)
108
109def mprint(var, mat, comment=None, post=None):
110    """
111    Generate assignment statements for matrix elements.
112    """
113    n = sp.prod(var.shape)
114    vprint(var.reshape(n, 1), mat.reshape(n, 1), comment=comment, post=post)
115
116# From wikipedia:
117#    https://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations
118def Rx(a):
119    """Rotate y and z about x"""
120    R = [[1, 0, 0],
121         [0, +cos(a), -sin(a)],
122         [0, +sin(a), +cos(a)]]
123    return Matrix(R)
124
125def Ry(a):
126    """Rotate x and z about y"""
127    R = [[+cos(a), 0, +sin(a)],
128         [0, 1, 0],
129         [-sin(a), 0, +cos(a)]]
130    return Matrix(R)
131
132def Rz(a):
133    """Rotate x and y about z"""
134    R = [[+cos(a), -sin(a), 0],
135         [+sin(a), +cos(a), 0],
136         [0, 0, 1]]
137    return Matrix(R)
138
139
140## ===============  Describe the transforms ====================
141
142# Define symbols used.  Note that if you change the symbols for the jitter
143# angles, you will need to update the subs() function accordingly.
144dphi, dpsi, dtheta = sp.var("phi^+ psi^+ theta^+")
145phi, psi, theta = sp.var("phi psi theta")
146#dphi, dpsi, dtheta = sp.var("beta^+ gamma^+ alpha^+")
147#phi, psi, theta = sp.var("beta gamma alpha")
148x, y, z = sp.var("x y z")
149q = sp.var("q")
150qx, qy, qz = sp.var("qx qy qz")
151dqx, dqy, dqz = sp.var("qx^+ qy^+ qz^+")
152qa, qb, qc = sp.var("qa qb qc")
153dqa, dqb, dqc = sp.var("qa^+ qb^+ qc^+")
154qab = sp.var("qab")
155
156# 3x3 matrix M
157J = Matrix([sp.var("J(1:4)(1:4)")]).reshape(3,3)
158V = Matrix([sp.var("V(1:4)(1:4)")]).reshape(3,3)
159R = Matrix([sp.var("R(1:4)(1:4)")]).reshape(3,3)
160
161# various vectors
162q_xy = Matrix([[qx], [qy], [0]])
163q_abc = Matrix([[qa], [qb], [qc]])
164q_xyz = Matrix([[qx], [qy], [qz]])
165dq_abc = Matrix([[dqa], [dqb], [dqc]])
166dq_xyz = Matrix([[dqx], [dqy], [dqz]])
167
168def print_steps(jitter, jitter_inv, view, view_inv, qc_only):
169    """
170    Show the forward/reverse transform code for view and jitter.
171    """
172    if 0:  # forward calculations
173        vprint(q_xyz, jitter*q_abc, "apply jitter")
174        vprint(dq_xyz, view*q_xyz, "apply view after jitter")
175
176        #vprint(dq_xyz, view*jitter*q_abc, "combine view and jitter")
177        mprint(M, view*jitter, "forward matrix")
178
179    if 1:  # reverse calculations
180        pre_view = "set angles from view" if REUSE_SINCOS else None
181        pre_jitter = "set angles from jitter" if REUSE_SINCOS else None
182        index = slice(2,3) if qc_only else slice(None,None)
183
184        comment("\n**** direct ****")
185        vprint(q_abc, view_inv*q_xy, "reverse view", post=pre_view)
186        vprint(dq_abc[index,:], (jitter_inv*q_abc)[index,:],
187               "reverse jitter after view", post=pre_jitter)
188
189        comment("\n\n**** precalc ****")
190        #vprint(q_abc, jitter_inv*view_inv*q_xy, "combine jitter and view reverse")
191        mprint(V[:,:2], view_inv[:,:2], "reverse view matrix", post=pre_view)
192        mprint(J[index,:], jitter_inv[index,:], "reverse jitter matrix", post=pre_jitter)
193        mprint(R[index,:2], (J*V)[index,:2], "reverse matrix")
194        comment("\n**** per point ****")
195        mprint(q_abc[index,:], (R*q_xy)[index,:], "applied reverse matrix")
196        #mprint(q_abc, J*V*q_xy, "applied reverse matrix")
197        #mprint(M, jitter_inv*view_inv, "reverse matrix direct")
198
199        #vprint(q_abc, M*q_xy, "matrix application")
200
201comment("==== asymmetric ====")
202print_steps(
203    jitter=Rx(dphi)*Ry(dtheta)*Rz(dpsi),
204    jitter_inv=Rz(-dpsi)*Ry(-dtheta)*Rx(-dphi),
205    view=Rz(phi)*Ry(theta)*Rz(psi),
206    view_inv=Rz(-psi)*Ry(-theta)*Rz(-phi),
207    qc_only=False,
208)
209
210comment("\n\n==== symmetric ====")
211print_steps(
212    jitter=Rx(dphi)*Ry(dtheta),
213    jitter_inv=Ry(-dtheta)*Rx(-dphi),
214    view=Rz(phi)*Ry(theta),
215    view_inv=Ry(-theta)*Rz(-phi),
216    qc_only=QC_ONLY,
217)
218
219comment("\n**** qab from qc ****")
220# The indirect calculation of qab is better than directly c
221# alculating qab^2 = qa^2 + qb^2 since qc can be computed
222# as qc = M31*qx + M32*qy, thus requiring only two elements
223# of the rotation matrix.
224#vprint(qab, sqrt(qa**2 + qb**2), "Direct calculation of qab")
225vprint(dqa, sqrt((qx**2+qy**2) - dqc**2),
226       "Indirect calculation of qab, from qab^2 = |q|^2 - qc^2")
Note: See TracBrowser for help on using the repository browser.