source: sasmodels/explore/J1c.py @ e9b0ef3

core_shell_microgelscostrafo411magnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since e9b0ef3 was 95ce773, checked in by wojciech, 9 years ago

Bessel functions clean-up

  • Property mode set to 100644
File size: 2.9 KB
RevLine 
[e6f1410]1r"""
2Show numerical precision of $2 J_1(x)/x$.
3"""
[95ce773]4import sys; sys.path.insert(0, '..')
[e6f1410]5
6import numpy as np
[95ce773]7try:
8    from mpmath import mp
9except:
10    # CRUFT: mpmath split out into its own package
11    from sympy.mpmath import mp
[e6f1410]12#import matplotlib; matplotlib.use('TkAgg')
13import pylab
14
15
[cbd37a7]16SHOW_DIFF = True # True if show diff rather than function value
17#SHOW_DIFF = False # True if show diff rather than function value
[e6f1410]18LINEAR_X = False  # True if q is linearly spaced instead of log spaced
[cbd37a7]19#LINEAR_X = True # True if q is linearly spaced instead of log spaced
20FUNCTION = "2*J1(x)/x"
[e6f1410]21
[cbd37a7]22def mp_fn(vec, bits=500):
[e6f1410]23    """
24    Direct calculation using sympy multiprecision library.
25    """
[0a6da3c]26    with mp.workprec(bits):
[cbd37a7]27        return [_mp_fn(mp.mpf(x)) for x in vec]
[e6f1410]28
[cbd37a7]29def _mp_fn(x):
[e6f1410]30    """
[cbd37a7]31    Actual function that gets evaluated.  The caller just vectorizes.
[e6f1410]32    """
33    return mp.mpf(2)*mp.j1(x)/x
34
[cbd37a7]35def np_fn(x, dtype):
[e6f1410]36    """
37    Direct calculation using scipy.
38    """
[0a6da3c]39    from scipy.special import j1 as J1
[e6f1410]40    x = np.asarray(x, dtype)
[0a6da3c]41    return np.asarray(2, dtype)*J1(x)/x
[e6f1410]42
[cbd37a7]43def sasmodels_fn(x, dtype, platform='ocl'):
[e6f1410]44    """
45    Calculation using pade approximant.
46    """
[cbd37a7]47    from sasmodels import core, data, direct_model
48    model = core.load_model('bessel', dtype=dtype)
49    calculator = direct_model.DirectModel(data.empty_data1D(x), model)
50    return calculator(background=0)
[0a6da3c]51
[e6f1410]52def plotdiff(x, target, actual, label):
53    """
54    Plot the computed value.
55
56    Use relative error if SHOW_DIFF, otherwise just plot the value directly.
57    """
58    if SHOW_DIFF:
[cbd37a7]59        err = abs((target-actual)/target)
60        #err = np.clip(err, 0, 1)
[e6f1410]61        pylab.loglog(x, err, '-', label=label)
62    else:
63        limits = np.min(target), np.max(target)
64        pylab.semilogx(x, np.clip(actual,*limits),  '-', label=label)
65
[cbd37a7]66def compare(x, precision, target):
[e6f1410]67    r"""
68    Compare the different computation methods using the given precision.
69    """
[cbd37a7]70    #plotdiff(x, target, mp_fn(x, 11), 'mp 11 bits')
71    plotdiff(x, target, np_fn(x, precision), 'numpy '+precision)
72    plotdiff(x, target, sasmodels_fn(x, precision, 0), 'sasmodels '+precision)
[e6f1410]73    pylab.xlabel("qr (1/Ang)")
74    if SHOW_DIFF:
75        pylab.ylabel("relative error")
76    else:
[cbd37a7]77        pylab.ylabel(FUNCTION)
[e6f1410]78        pylab.semilogx(x, target,  '-', label="true value")
79    if LINEAR_X:
80        pylab.xscale('linear')
81
82def main():
83    r"""
84    Compare accuracy of different methods for computing $3 j_1(x)/x$.
85    :return:
86    """
87    if LINEAR_X:
88        qr = np.linspace(1,1000,2000)
89    else:
90        qr = np.logspace(-3,5,400)
[cbd37a7]91    target = np.asarray(mp_fn(qr), 'double')
[e6f1410]92    pylab.subplot(121)
[cbd37a7]93    compare(qr, 'single', target)
[e6f1410]94    pylab.legend(loc='best')
95    pylab.subplot(122)
[cbd37a7]96    compare(qr, 'double', target)
[e6f1410]97    pylab.legend(loc='best')
[cbd37a7]98    pylab.suptitle(FUNCTION)
[e6f1410]99
100if __name__ == "__main__":
[0a6da3c]101    #print "\n".join(str(x) for x in mp_J1c([1e-6,1e-5,1e-4,1e-3]))
[e6f1410]102    main()
103    pylab.show()
Note: See TracBrowser for help on using the repository browser.