[e6f1410] | 1 | r""" |
---|
| 2 | Show numerical precision of $2 J_1(x)/x$. |
---|
| 3 | """ |
---|
| 4 | |
---|
| 5 | import numpy as np |
---|
| 6 | from sympy.mpmath import mp |
---|
| 7 | #import matplotlib; matplotlib.use('TkAgg') |
---|
| 8 | import pylab |
---|
| 9 | |
---|
| 10 | |
---|
| 11 | SHOW_DIFF = True # True if show diff rather than function value |
---|
| 12 | LINEAR_X = False # True if q is linearly spaced instead of log spaced |
---|
| 13 | |
---|
[0a6da3c] | 14 | def mp_J1c(vec, bits=500): |
---|
[e6f1410] | 15 | """ |
---|
| 16 | Direct calculation using sympy multiprecision library. |
---|
| 17 | """ |
---|
[0a6da3c] | 18 | with mp.workprec(bits): |
---|
| 19 | return [_mp_J1c(mp.mpf(x)) for x in vec] |
---|
[e6f1410] | 20 | |
---|
| 21 | def _mp_J1c(x): |
---|
| 22 | """ |
---|
| 23 | Helper funciton for mp_j1c |
---|
| 24 | """ |
---|
| 25 | return mp.mpf(2)*mp.j1(x)/x |
---|
| 26 | |
---|
[0a6da3c] | 27 | def np_J1c(x, dtype): |
---|
[e6f1410] | 28 | """ |
---|
| 29 | Direct calculation using scipy. |
---|
| 30 | """ |
---|
[0a6da3c] | 31 | from scipy.special import j1 as J1 |
---|
[e6f1410] | 32 | x = np.asarray(x, dtype) |
---|
[0a6da3c] | 33 | return np.asarray(2, dtype)*J1(x)/x |
---|
[e6f1410] | 34 | |
---|
[0a6da3c] | 35 | def cephes_J1c(x, dtype, n): |
---|
[e6f1410] | 36 | """ |
---|
| 37 | Calculation using pade approximant. |
---|
| 38 | """ |
---|
[0a6da3c] | 39 | f = np.float64 if np.dtype(dtype) == np.float64 else np.float32 |
---|
[e6f1410] | 40 | x = np.asarray(x, dtype) |
---|
| 41 | ans = np.empty_like(x) |
---|
| 42 | ax = abs(x) |
---|
| 43 | |
---|
| 44 | # Branch a |
---|
[0a6da3c] | 45 | a_idx = ax < f(8.0) |
---|
[e6f1410] | 46 | a_xsq = x[a_idx]**2 |
---|
| 47 | a_coeff1 = list(reversed((72362614232.0, -7895059235.0, 242396853.1, -2972611.439, 15704.48260, -30.16036606))) |
---|
| 48 | a_coeff2 = list(reversed((144725228442.0, 2300535178.0, 18583304.74, 99447.43394, 376.9991397, 1.0))) |
---|
[0a6da3c] | 49 | a_ans1 = np.polyval(np.asarray(a_coeff1[n:], dtype), a_xsq) |
---|
| 50 | a_ans2 = np.polyval(np.asarray(a_coeff2[n:], dtype), a_xsq) |
---|
| 51 | ans[a_idx] = f(2.0)*a_ans1/a_ans2 |
---|
[e6f1410] | 52 | |
---|
| 53 | # Branch b |
---|
| 54 | b_idx = ~a_idx |
---|
| 55 | b_ax = ax[b_idx] |
---|
| 56 | b_x = x[b_idx] |
---|
| 57 | |
---|
[0a6da3c] | 58 | b_y = f(64.0)/(b_ax**2) |
---|
| 59 | b_xx = b_ax - f(2.356194491) |
---|
[e6f1410] | 60 | b_coeff1 = list(reversed((1.0, 0.183105e-2, -0.3516396496e-4, 0.2457520174e-5, -0.240337019e-6))) |
---|
| 61 | b_coeff2 = list(reversed((0.04687499995, -0.2002690873e-3, 0.8449199096e-5, -0.88228987e-6, 0.105787412e-6))) |
---|
[0a6da3c] | 62 | b_ans1 = np.polyval(np.asarray(b_coeff1[n:], dtype),b_y) |
---|
| 63 | b_ans2 = np.polyval(np.asarray(b_coeff2[n:], dtype), b_y) |
---|
[e6f1410] | 64 | b_sn, b_cn = np.sin(b_xx), np.cos(b_xx) |
---|
[0a6da3c] | 65 | ans[b_idx] = np.sign(b_x)*np.sqrt(f(0.636619772)/b_ax) * (b_cn*b_ans1 - (f(8.0)/b_ax)*b_sn*b_ans2)*f(2.0)/b_x |
---|
[e6f1410] | 66 | |
---|
| 67 | return ans |
---|
| 68 | |
---|
[0a6da3c] | 69 | def div_J1c(x, dtype): |
---|
| 70 | f = np.float64 if np.dtype(dtype) == np.float64 else np.float32 |
---|
| 71 | x = np.asarray(x, dtype) |
---|
| 72 | return f(2.0)*np.asarray([_J1(xi, f)/xi for xi in x], dtype) |
---|
| 73 | |
---|
| 74 | def _J1(x, f): |
---|
| 75 | ax = abs(x) |
---|
| 76 | if ax < f(8.0): |
---|
| 77 | y = x*x |
---|
| 78 | ans1 = x*(f(72362614232.0) |
---|
| 79 | + y*(f(-7895059235.0) |
---|
| 80 | + y*(f(242396853.1) |
---|
| 81 | + y*(f(-2972611.439) |
---|
| 82 | + y*(f(15704.48260) |
---|
| 83 | + y*(f(-30.16036606))))))) |
---|
| 84 | ans2 = (f(144725228442.0) |
---|
| 85 | + y*(f(2300535178.0) |
---|
| 86 | + y*(f(18583304.74) |
---|
| 87 | + y*(f(99447.43394) |
---|
| 88 | + y*(f(376.9991397) |
---|
| 89 | + y))))) |
---|
| 90 | return ans1/ans2 |
---|
| 91 | else: |
---|
| 92 | y = f(64.0)/(ax*ax) |
---|
| 93 | xx = ax - f(2.356194491) |
---|
| 94 | ans1 = (f(1.0) |
---|
| 95 | + y*(f(0.183105e-2) |
---|
| 96 | + y*(f(-0.3516396496e-4) |
---|
| 97 | + y*(f(0.2457520174e-5) |
---|
| 98 | + y*f(-0.240337019e-6))))) |
---|
| 99 | ans2 = (f(0.04687499995) |
---|
| 100 | + y*(f(-0.2002690873e-3) |
---|
| 101 | + y*(f(0.8449199096e-5) |
---|
| 102 | + y*(f(-0.88228987e-6) |
---|
| 103 | + y*f(0.105787412e-6))))) |
---|
| 104 | sn, cn = np.sin(xx), np.cos(xx) |
---|
| 105 | ans = np.sqrt(f(0.636619772)/ax) * (cn*ans1 - (f(8.0)/ax)*sn*ans2) |
---|
| 106 | return -ans if (x < f(0.0)) else ans |
---|
| 107 | |
---|
[e6f1410] | 108 | def plotdiff(x, target, actual, label): |
---|
| 109 | """ |
---|
| 110 | Plot the computed value. |
---|
| 111 | |
---|
| 112 | Use relative error if SHOW_DIFF, otherwise just plot the value directly. |
---|
| 113 | """ |
---|
| 114 | if SHOW_DIFF: |
---|
| 115 | err = np.clip(abs((target-actual)/target), 0, 1) |
---|
| 116 | pylab.loglog(x, err, '-', label=label) |
---|
| 117 | else: |
---|
| 118 | limits = np.min(target), np.max(target) |
---|
| 119 | pylab.semilogx(x, np.clip(actual,*limits), '-', label=label) |
---|
| 120 | |
---|
| 121 | def compare(x, precision): |
---|
| 122 | r""" |
---|
| 123 | Compare the different computation methods using the given precision. |
---|
| 124 | """ |
---|
| 125 | target = np.asarray(mp_J1c(x), 'double') |
---|
[0a6da3c] | 126 | #plotdiff(x, target, mp_J1c(x, 11), 'mp 11 bits') |
---|
| 127 | plotdiff(x, target, np_J1c(x, precision), 'direct '+precision) |
---|
| 128 | plotdiff(x, target, cephes_J1c(x, precision, 0), 'cephes '+precision) |
---|
| 129 | #plotdiff(x, target, cephes_J1c(x, precision, 1), 'cephes '+precision) |
---|
| 130 | #plotdiff(x, target, div_J1c(x, precision), 'cephes 2 J1(x)/x '+precision) |
---|
[e6f1410] | 131 | pylab.xlabel("qr (1/Ang)") |
---|
| 132 | if SHOW_DIFF: |
---|
| 133 | pylab.ylabel("relative error") |
---|
| 134 | else: |
---|
| 135 | pylab.ylabel("2 J1(x)/x") |
---|
| 136 | pylab.semilogx(x, target, '-', label="true value") |
---|
| 137 | if LINEAR_X: |
---|
| 138 | pylab.xscale('linear') |
---|
| 139 | |
---|
| 140 | def main(): |
---|
| 141 | r""" |
---|
| 142 | Compare accuracy of different methods for computing $3 j_1(x)/x$. |
---|
| 143 | :return: |
---|
| 144 | """ |
---|
| 145 | if LINEAR_X: |
---|
| 146 | qr = np.linspace(1,1000,2000) |
---|
| 147 | else: |
---|
| 148 | qr = np.logspace(-3,5,400) |
---|
| 149 | pylab.subplot(121) |
---|
| 150 | compare(qr, 'single') |
---|
| 151 | pylab.legend(loc='best') |
---|
| 152 | pylab.subplot(122) |
---|
| 153 | compare(qr, 'double') |
---|
| 154 | pylab.legend(loc='best') |
---|
| 155 | pylab.suptitle('2 J1(x)/x') |
---|
| 156 | |
---|
| 157 | if __name__ == "__main__": |
---|
[0a6da3c] | 158 | #print "\n".join(str(x) for x in mp_J1c([1e-6,1e-5,1e-4,1e-3])) |
---|
[e6f1410] | 159 | main() |
---|
| 160 | pylab.show() |
---|