source: sasmodels/example/weights/gaussian_eq.py @ 1657e21

Last change on this file since 1657e21 was 55e82f0, checked in by Paul Kienzle <pkienzle@…>, 6 years ago

add some weights examples and update docs

  • Property mode set to 100644
File size: 1.2 KB
RevLine 
[55e82f0]1import numpy as np
2import scipy.stats
3
4from sasmodels.weights import Dispersion as BaseDispersion
5
6class Dispersion(BaseDispersion):
7    r"""
8    Gaussian dispersion, with 1-$\sigma$ width.
9
10    .. math::
11
12        w = \exp\left(-\tfrac12 (x - c)^2/\sigma^2\right)
13
14    $x$ points are chosen such that each interval has equal weight.
15
16    This works surprisingly poorly.  Try::
17
18        $ sascomp cylinder -2d theta=45 phi=20 phi_pd_type=gaussian_eq \
19          phi_pd_n=100,1000 radius=50 length=2*radius -midq phi_pd=5
20
21    Leaving it here for others to improve.
22    """
23    type = "gaussian_eq"
24    default = dict(npts=35, width=0, nsigmas=3)
25
26    def _weights(self, center, sigma, lb, ub):
27        # Use the gaussian distribution from scipy.stats
28        dist = scipy.stats.norm(center, sigma)
29
30        # Find the mid-points of the cdf intervals
31        cdf = np.linspace(0, 1, self.npts+2)[1:-1]
32        x = dist.ppf(cdf)
33
34        # Since we are equally spaced in cdf, all weights are the same
35        wx = np.ones_like(x)
36
37        # Truncate the distribution in case the parameter value is limited
38        index = (x >= lb) & (x <= ub)
39        x, wx = x[index], wx[index]
40
41        return x, wx
42
Note: See TracBrowser for help on using the repository browser.