1 | #!/usr/bin/env python |
---|
2 | """ |
---|
3 | Submit a batch fit job to the slurm cluster. |
---|
4 | |
---|
5 | Given a model.py file defining a Bumps problem defined on a single data |
---|
6 | file, with the data file specified as a command line argument, run the |
---|
7 | bumps fit as a batch over a set of different datafiles independently. |
---|
8 | An example model is given in model_ellipsoid_hayter_msa.py, which fits |
---|
9 | the data in 09319*.dat. |
---|
10 | |
---|
11 | To run the fit, use:: |
---|
12 | |
---|
13 | slurm_batch.py [--slurm_opts] model.py *.dat --store=T1 [--bumps_opt ...] |
---|
14 | |
---|
15 | For example:: |
---|
16 | |
---|
17 | slurm_batch.py model_ellipsoid_hayter_msa.py 09319*.dat --store=T1 |
---|
18 | |
---|
19 | This creates the T1 subdirectory to hold the fit results and |
---|
20 | prints the real command that is submitted, as well as the job id. |
---|
21 | |
---|
22 | The store directory T1 contains a copy of the model file and |
---|
23 | all the data files. The fit results for each file will be |
---|
24 | in T1/##/*. The file T1/files.dat contains the list |
---|
25 | of "subdirectory filename" pairs indicating which ## directory |
---|
26 | contains the resuls for which file. Check for errors using:: |
---|
27 | |
---|
28 | cat T1/slurm*_1.out |
---|
29 | |
---|
30 | The following slurm options are used:: |
---|
31 | |
---|
32 | --array=1-#files batch size comes from the file list |
---|
33 | --gres=gpu:1 request a gpu for each fit |
---|
34 | --job-name=model.py use model file name for job name |
---|
35 | --output=... log into T1/slurm-job_##.out |
---|
36 | --chdir=... run fit from store directory |
---|
37 | --time=2 time as number of hours (can override) |
---|
38 | |
---|
39 | To receive an email on job completion or failure, add the following |
---|
40 | slurm options before the model file:: |
---|
41 | |
---|
42 | --mail-type=END,FAIL --mail-user=user@mail.domain |
---|
43 | |
---|
44 | Bumps options are described at bumps.readthedocs.org, with the |
---|
45 | following set automatically:: |
---|
46 | |
---|
47 | --batch run in batch mode, without output to .mon |
---|
48 | --view=log SAS fits want log plots |
---|
49 | --time=2-0.1 slurm time minus 6 minutes for cleanup |
---|
50 | |
---|
51 | The --store and --resume options indicate the parent directory for |
---|
52 | the output. These are modified to store the results in a separate |
---|
53 | subdirectory for each file. Keep in mind that the fit is run from |
---|
54 | the store directory, so any files or modules referenced from the |
---|
55 | model file will need to use a full path to the original location. |
---|
56 | |
---|
57 | After submitting the job a job id will be printed to the console. |
---|
58 | You can check the status of the job using the usual slurm commands |
---|
59 | such as:: |
---|
60 | |
---|
61 | squeue |
---|
62 | |
---|
63 | or cancel the job using:: |
---|
64 | |
---|
65 | scancel jobid |
---|
66 | |
---|
67 | The slurm_batch program runs directly from the source tree for sasmodels, |
---|
68 | and requires sasview, bumps and periodictable as sister directories |
---|
69 | accessible on the worker nodes. You can link it into your bin directory |
---|
70 | using:: |
---|
71 | |
---|
72 | mkdir ~/bin |
---|
73 | ln -s path/to/slurm_batch.py ~/bin |
---|
74 | |
---|
75 | or if you are a cluster administrator, into /usr/local/bin. |
---|
76 | """ |
---|
77 | |
---|
78 | # If called from command line, this submits a job to the slurm queue, with _this_ file |
---|
79 | # as the batch script. Before calling it on the worker node, slurm sets the |
---|
80 | # SLURM_ARRAY_TASK_ID to the current task so we can tell that we are running |
---|
81 | # as a worker and which file we should be working on. |
---|
82 | |
---|
83 | ## SBATCH options as comments do not seem to work. Maybe they neeed to be before |
---|
84 | ## the doc string? For now they are hardcoded in the sbatch call in submit_job. |
---|
85 | |
---|
86 | import sys |
---|
87 | import os |
---|
88 | import tempfile |
---|
89 | import shutil |
---|
90 | |
---|
91 | DEFAULT_TIME_LIMIT = 2 |
---|
92 | |
---|
93 | def split_args(): |
---|
94 | slurm_opts = [] |
---|
95 | bumps_opts = [] |
---|
96 | model_file = None |
---|
97 | store = None |
---|
98 | resume = None |
---|
99 | data_files = [] |
---|
100 | time_limit = DEFAULT_TIME_LIMIT |
---|
101 | |
---|
102 | # start with '-' arguments as slurm opts, then after |
---|
103 | # the model file any '-' arguments are bumps opts. |
---|
104 | opts = slurm_opts |
---|
105 | for v in sys.argv[1:]: |
---|
106 | if v.startswith('--store='): |
---|
107 | store = os.path.realpath(os.path.abspath(v[8:])) |
---|
108 | elif v.startswith('--resume='): |
---|
109 | resume = os.path.realpath(os.path.abspath(v[9:])) |
---|
110 | elif v.startswith('--time='): |
---|
111 | time_limit = float(v[7:]) |
---|
112 | elif v[0] == '-': |
---|
113 | opts.append(v) |
---|
114 | elif model_file is None: |
---|
115 | model_file = v |
---|
116 | opts = bumps_opts |
---|
117 | else: |
---|
118 | data_files.append(v) |
---|
119 | |
---|
120 | |
---|
121 | s = time_limit*3600 |
---|
122 | slurm_opts.append("--time=%d:%02d:%02d"%(s//3600, (s%3600)//60, s%60)) |
---|
123 | bumps_opts.append('--time=%f'%(time_limit - 0.1)) # 6 min to stop cleanly |
---|
124 | |
---|
125 | return { |
---|
126 | 'slurm': slurm_opts, |
---|
127 | 'model_file': model_file, |
---|
128 | 'data_files': data_files, |
---|
129 | 'store': store, |
---|
130 | 'resume': resume, |
---|
131 | 'bumps': bumps_opts, |
---|
132 | } |
---|
133 | |
---|
134 | def dirn(path, n): |
---|
135 | path = os.path.realpath(os.path.abspath(path)) |
---|
136 | for _ in range(n): |
---|
137 | path = os.path.dirname(path) |
---|
138 | return path |
---|
139 | |
---|
140 | def submit_job(): |
---|
141 | # sbatch --array=1-5 ./slurm_batch.py model_ellipsoid_hayter_msa.py 09*.dat --store=T1 --fit=dream |
---|
142 | opts = split_args() |
---|
143 | store = opts['store'] |
---|
144 | model_file = opts['model_file'] |
---|
145 | data_files = opts['data_files'] |
---|
146 | bumps_opts = opts['bumps'] |
---|
147 | slurm_opts = opts['slurm'] |
---|
148 | |
---|
149 | # make sure the store directory exists and save the order of the files, as well |
---|
150 | # as the model and the data files |
---|
151 | if store is not None: |
---|
152 | if not os.path.exists(store): |
---|
153 | os.makedirs(store) |
---|
154 | |
---|
155 | # save file order |
---|
156 | with open(os.path.join(store, 'files.dat'), 'w') as fid: |
---|
157 | for k, f in enumerate(data_files): |
---|
158 | fid.write("%02d %s\n"%(k+1, f)) |
---|
159 | |
---|
160 | # Copy the model and data files to the root store directory |
---|
161 | # Since bumps changes into the model directory prior to loading |
---|
162 | # the datafiles, strip all leading paths from data and model and |
---|
163 | # set the working directory for the job to the store directory. |
---|
164 | model_copy = os.path.basename(model_file) |
---|
165 | shutil.copy(model_file, os.path.join(store, model_copy)) |
---|
166 | data_copy = [] |
---|
167 | for f in data_files: |
---|
168 | f_copy = os.path.basename(f) |
---|
169 | shutil.copy(f, os.path.join(store, f_copy)) |
---|
170 | data_copy.append(f_copy) |
---|
171 | |
---|
172 | model_file = model_copy |
---|
173 | data_files = data_copy |
---|
174 | |
---|
175 | |
---|
176 | # build and run the command |
---|
177 | SRC = dirn(__file__, 3) # __file__ is $SRC/sasmodels/example/slurm_batch.py |
---|
178 | parts = [ |
---|
179 | "sbatch", |
---|
180 | "--array=1-%d"%len(data_files), |
---|
181 | "--gres=gpu:1", |
---|
182 | "--job-name="+model_file, |
---|
183 | ## since we are setting the current working directory, we don't need |
---|
184 | ## to fiddle the slurm output files |
---|
185 | "--output=%s/slurm-%%A_%%a.out"%store, |
---|
186 | "--chdir=%s"%store, |
---|
187 | ] |
---|
188 | parts.extend(slurm_opts) |
---|
189 | parts.append(__file__) |
---|
190 | # Remember the source root so we can reconstruct the correct python path |
---|
191 | # This is done after the model file so that it doesn't get interpreted |
---|
192 | # as a slurm option. |
---|
193 | parts.append("--source_root=%s"%SRC) |
---|
194 | parts.append(model_file) |
---|
195 | parts.extend(data_files) |
---|
196 | parts.extend(bumps_opts) |
---|
197 | #if store is not None: |
---|
198 | # parts.append("--store=" + store) |
---|
199 | command = " ".join(parts) |
---|
200 | |
---|
201 | print(command) |
---|
202 | os.system(command) |
---|
203 | |
---|
204 | def run_task(task_id): |
---|
205 | opts = split_args() |
---|
206 | |
---|
207 | # Set environment put compiled sasmodels in user-specific temporary cache |
---|
208 | # We need this because users don't have a home directory on the individual |
---|
209 | # cluster nodes. |
---|
210 | assert opts['slurm'][0].startswith('--source_root=') |
---|
211 | SRC = opts['slurm'][0][14:] |
---|
212 | PACKAGES = ("periodictable", "sasview/src", "bumps", "sasmodels") |
---|
213 | os.environ['PYTHONPATH'] = ":".join(SRC+"/"+v for v in PACKAGES) |
---|
214 | TMP = tempfile.gettempdir() |
---|
215 | cache_path = os.path.join(TMP, os.environ['USER'], '.cache') |
---|
216 | os.environ['SAS_DLL_PATH'] = cache_path |
---|
217 | os.environ['XDG_CACHE_HOME'] = cache_path |
---|
218 | |
---|
219 | #task_store = "%s/%02d"%(opts['store'], task_id) |
---|
220 | task_store = "%02d"%task_id |
---|
221 | parts = [ |
---|
222 | "python", os.path.join(SRC, "bumps", "run.py"), "--batch", |
---|
223 | "--view=log", |
---|
224 | opts['model_file'], |
---|
225 | opts['data_files'][task_id-1], |
---|
226 | ] |
---|
227 | parts.extend(opts['bumps']) |
---|
228 | parts.append('--store='+task_store) |
---|
229 | if opts['resume'] is not None: |
---|
230 | parts.append('--resume='+os.path.join(opts['resume'], task_store)) |
---|
231 | command = " ".join(parts) |
---|
232 | print(os.getcwd() + "$ " + command) |
---|
233 | os.system(command) |
---|
234 | |
---|
235 | |
---|
236 | task_id = int(os.environ.get('SLURM_ARRAY_TASK_ID', -1)) |
---|
237 | if task_id == -1: |
---|
238 | submit_job() |
---|
239 | else: |
---|
240 | run_task(task_id) |
---|
241 | |
---|